Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Direct Sound Radiation Testing on a Mounted Car Engine

2014-06-30
2014-01-2088
For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
Journal Article

A Study of Wheel Guards for Reduction of High Frequency Road-Noise

2015-04-14
2015-01-1309
This Study describes about the development of new concept' rear wheel guards for the reduction of Road Noise in the passenger vehicles. The new wheel guards are proposed by various frequency chamber concept and different textile layers concept. Two wheel guards were verified by small cabin resonance and vehicle tests. Through new developing process without vehicle test, Result of road noise will be expected if this concepts and materials of wheel guard are applied into automotive vehicle. As this concept consider tire radiation noise frequency and multilayers sound control multilayers, 2 concepts reduced road noise from 0.5 to 1.0dB. The proposed method of part reverberant absorption is similar to results of vehicle tests by part absorption index. Furthermore, optimization of frequency band in wheel guards will reduce more 0.5 dB noises. As a result of the application of Aimed Helmholtz and Multilayers concept, this paper classifies reduction of the road noise, cost and weights.
Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
Technical Paper

Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region

2007-05-15
2007-01-2251
In this research, the influence of tire size and shape on sound radiation in the mid-frequency region was studied. First, the relationship between the structural wave propagation characteristics of a tire excited at one point and its sound radiation was identified by using FE and BE analyses. Then, by using that relationship, the effect of modifying a tire's aspect ratio, width and wheel diameter on its sound radiation between 300 Hz and 800 Hz was investigated. Finally, an optimization of the sound radiation was performed by modification of the tire structure and shape. It was found that most of a tire's structural vibration does not contribute to sound radiation. In particular, the effective radiation was found to occur at the frequencies where low wave number components of the longitudinal wave and the flexural wave first appear.
Technical Paper

Noble Materials for Thin-Walled Bumper Fascia with Enhanced Processibility and Dimensional Stability

1998-02-01
980105
A new noble material for automotive bumper fascia has been developed by compounding of ethylene-propylene block copolymers with ethylene-α-olefin copolymers and some additives. Also mineral fillers are added, if necessary. This material is suitable for injection molding of large parts including automotive bumper fascia. By using selected rubbers which have proper melt viscosity, molecular weight, and co-monomer content, and adding modified polymer containing polar group, it has enhanced processibility and paintability maintaining general properties such as tensile strength, impact strength at low temperature, and thermal and UV stability. The remarkable characteristics of this material is good processibility compared to the conventional TPOs. This material has especially high melt flow index(20∼30g/10min at 230°C) and stable flow behavior at the processing conditions.
Technical Paper

Experimental Study on DGPS/RTK Based Path Following System Using Backstepping Control Methodology

2007-08-05
2007-01-3579
This paper mainly focuses on a lateral control law for pre-given path following which is developed by using the backstepping control design methodology. The position information of the vehicle is obtained by Real Time Kinematic DGPS, and the yaw rate and side-slip angle used in controller are estimated by Kalman estimator. To show the performance of the proposed controller under different speed and various path curvature conditions, the results are given through experiments which are executed on proving ground especially designed for high maneuvering test of which minimum radius of curvature is about 60 m.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Vision Based Path-Following Control System Using Backstepping Control Methodology

2008-04-14
2008-01-0202
This paper describes an automated path following system using vision sensor. Lateral control law for path following is especially underlined which is developed by using the backstepping control design methodology. To establish the proposed control system, the lateral offset to the reference path, the heading angle of vehicle relative to tangent line to the path, and path curvature are required. Those inputs to the controller have been calculated through Kalman filter which is frequently adopted for the purpose. The lane mark detection has been achieved in an ECU (Electric Control Unit) platform with vision sensor. The yaw rate and side-slip angle also needed in the controller are estimated by Kalman estimator. To show the performance of the proposed controller under different speeds, experiment has been conducted on a proving ground having straight and curve sections with the curvature of about 260m.
Technical Paper

Development of Low-Noise Cooling Fan Using Uneven Fan Blade Spacing

2008-04-14
2008-01-0569
When unifying the functions of widely used two-fan, engine cooling system into a single fan unit, the noise and power issues must be addressed. The noise problem due to the increased fan radius is a serious matter especially as the cabin noise becomes quieter for sedans. Of the fan noise components, discrete noise at BPF's (Blade Passing Frequency) seriously degrades cabin sound quality. Unevenly spaced fan is developed to reduce the tones. The fan blades are spaced such that the center of mass is placed exactly on the fan axis to minimize fan vibration. The resulting fan noise is 11 dBA quieter in discrete noise level than the even bladed fan system.
Technical Paper

Test Method Development and Understanding of Filter Ring-off-Cracks in a Catalyzed Silicon Carbide (SiC) Diesel Particulate Filter System Design

2008-04-14
2008-01-0765
As the use of diesel engines increases in the transportation industry and emission regulations tighten, the implementation of diesel particulate filter systems has expanded. There are many challenges associated with the design and development of these systems. Some of the key robustness parameters include regeneration, efficiency, fuel penalty, engine performance, and durability. One component of durability in a diesel particulate filter (DPF) system is the filter's ability to resist ring-off-cracking (ROC). ROC is described as a crack caused primarily by thermal gradients, differentials, and the resulting stresses within the DPF that exceed its internal strength. These cracks usually run perpendicular to the substrate flow axis and typically result in the breaking of the substrate into separate halves.
Technical Paper

Experimental Study on the Air Quality of Vehicle’s Cabin by Evaluating CO2 Concentration and Fine Dust on the Actual Road

2009-04-20
2009-01-0536
For a complete automotive HVAC system, it is desirable to keep good air quality control for the interior vehicle cabin. This experimental study for evaluating the CO2 concentration levels in a vehicle cabin was done on the roads in South Korea. Increasing levels of CO2 can cause a passenger to become tired, sleepy and cause headaches or discomfort. The study results shows that CO2 and fine dust concentration is a result of the number of passengers,_driving condition and HVAC user settings. The result from this investigation can be used to establish a development guide for air quality in a vehicle cabin.
Technical Paper

Springback Elimination in Structural Components by Means of Electromagnetic Forming

2009-04-20
2009-01-0803
Looking for car weight reduction related to the use of High Strength Steels (HSS) for manufacturing body-in-white components, an innovative application of the high velocity forming techniques has been developed: the Electro Magnetic (EM) calibration and elimination of the spring-back effect (sidewall curl) of High Strength Steel U-channels. Within this paper the initial tests on L and U-shaped parts will be presented. Being the mechanical stiffness the main parameter for improving the coil endurance, the prediction of the coil strains under EM forces is a basic issue, which has been addressed within this study.
Technical Paper

Development of CAE Methodology for Rollover Sensing Algorithm

2009-04-20
2009-01-0828
The Rollover CAE model is developed for Rollover sensing algorithm in this paper. By using suggested CAE model, it is possible to make sensing data of rollover test matrix and these data can be used for calibration of rollover sensing algorithm. Developed vehicle model consists of three parts: a vehicle parts, an occupant parts and a ground boundary conditions. The vehicle parts include detailed suspension model and FE structure model. The occupant parts include ATD (anthropomorphic test device) male dummy and restraint systems: Curtain Airbag and Seat-Belt. We find analytical value of the suspension model through correlation with vehicle drop test, simulate this model under the conditions of untripped (Embankment, Corkscrew) and tripped (Curb-Trip, Soil-Trip) rollover scenarios. Comparison of the simulation and experimental data shows that the simulation results of suggested CAE model can be substituted for the experimental ones in calibration of rollover sensing algorithm.
Technical Paper

Benefits of GTL Fuel in Vehicles Equipped with Diesel Particulate Filters

2009-06-15
2009-01-1934
Synthetic fuels are expected to play an important role for future mobility, because they can be introduced seamlessly alongside conventional fuels without the need for new infrastructure. Thus, understanding the interaction of GTL fuels with modern engines, and aftertreatment systems, is important. The current study investigates potential benefits of GTL fuel in respect of diesel particulate filters (DPF). Experiments were conducted on a Euro 4 TDI engine, comparing the DPF response to two different fuels, normal diesel and GTL fuel. The investigation focused on the accumulation and regeneration behavior of the DPF. Results indicated that GTL fuel reduced particulate formation to such an extent that the regeneration cycle was significantly elongated, by ∼70% compared with conventional diesel. Thus, the engine could operate for this increased time before the DPF reached maximum load and regeneration was needed.
X