Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Humidity on the Very High Cycle Fatigue Behavior of a Cast Aluminum Alloy

2016-04-05
2016-01-0371
In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
Journal Article

TWC+LNT/SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines

2015-04-14
2015-01-1006
A laboratory study was performed to assess the potential capability of TWC+LNT/SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. It was assumed that the exhaust system would need a close-coupled (CC) TWC, an underbody (U/B) TWC, and a third U/B LNT/SCR converter to satisfy the emission standards on the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. Sizing studies were performed to determine the minimum LNT/SCR volume needed to satisfy the NOx target. The ability of the TWC to oxidize the HC during rich operation through steam reforming was crucial for satisfying the HC target.
Technical Paper

Experimental Study on DGPS/RTK Based Path Following System Using Backstepping Control Methodology

2007-08-05
2007-01-3579
This paper mainly focuses on a lateral control law for pre-given path following which is developed by using the backstepping control design methodology. The position information of the vehicle is obtained by Real Time Kinematic DGPS, and the yaw rate and side-slip angle used in controller are estimated by Kalman estimator. To show the performance of the proposed controller under different speed and various path curvature conditions, the results are given through experiments which are executed on proving ground especially designed for high maneuvering test of which minimum radius of curvature is about 60 m.
Technical Paper

The Advantages of Using Standard Vehicle Dynamics Procedures and Analysis Programs

1998-02-23
981077
Globalization in the automotive industry has resulted in a tremendous competitive advantage to those companies who can internally communicate ideas and information effectively and in a timely manner. This paper discusses one such effort related to objectively testing vehicles for steering and handling characteristics by implementing standard test procedures, data acquisition hardware and analysis methods. Ford Motor Company's Vehicle Dynamics Test Section has refined a number of test procedures to the point that, with proper training, all design and development engineers can quickly acquire, analyze and share test results. Four of these procedures and output are discussed in detail.
Technical Paper

Effective In-Vehicle Acquisition

1998-02-23
981076
This paper will describe the development of an in-vehicle data acquisition and analysis system. The problem facing the Vehicle Dynamics Test Section of Ford Motor Company was to replace an antiquated data recorder with a versatile in-vehicle data acquisition system capable of supporting vehicle dynamics testing and development. The following criteria for a system was developed: Quick and easy quick software and hardware setup Off-the-shelf hardware wherever possible User-friendly software Flexible Open-ended and modular design Rugged Cost effective Utilizing the above criteria a number of commercially available systems were evaluated and found to be lacking. Therefore it was decided that a system suitable for vehicle dynamics testing would have to be developed.
Technical Paper

An Evaluation of Laminated Side Window Glass Performance During Rollover

2007-04-16
2007-01-0367
In this study, the occupant containment characteristics of automotive laminated safety glass in side window applications was evaluated through two full-scale, full-vehicle dolly rollover crash tests. The dolly rollover crash tests were performed on sport utility vehicles equipped with heat-strengthened laminated safety glass in the side windows in order to: (1) evaluate the capacity of laminated side window safety glass to contain unrestrained occupants during rollover, (2) analyze the kinematics associated with unrestrained occupants during glazing interaction and ejection, and (3) to identify laminated side window safety glass failure modes. Dolly rollovers were performed on a 1998 Ford Expedition and a 2004 Volvo XC90 at a nominal speed of 43 mph, with unbelted Hybrid II Anthropomorphic Test Devices (ATDs) positioned in the outboard seating positions.
Technical Paper

Vehicle Rollover Sensor Test Modeling

2007-04-16
2007-01-0686
A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension kinematics and compliance test. The correlated model was then used to simulate a J-turn vehicle dynamics test maneuver, a roll and non-roll ditch test, corkscrew ramp and a lateral trip test, the results of which are presented in this paper. The results indicate that MADYMO is able to reasonably predict the vehicle and occupant responses in these types of applications and is potentially suited as a tool to help setup a suite of vehicle configurations and test conditions for rollover sensor testing. A suspension system sensitivity study is presented for the laterally tripped non-roll event.
Technical Paper

The Influence of Ammonia to NOX Ratio on SCR Performance

2007-04-16
2007-01-1581
It is likely that use of urea-based selective catalytic reduction (SCR) will be needed to meet U.S. Tier 2 diesel emission standards for oxides of nitrogen (NOx). The ideal ratio of ammonia (NH3) molecules to NOx molecules (known as alpha) is 1:1 based on urea consumption and having NH3 available for reaction of all of the exhaust NOx. However, SCR efficiency can be less than 100% at low temperatures in general, and at higher temperatures with high exhaust SCR catalyst space velocities. At the low temperatures where NOx conversion efficiency is low, it may be advantageous to reduce the alpha ratio to values less than one (less NH3 than is needed to convert 100% of the NOx emissions) to avoid NH3 slip. At higher space velocities and high temperatures, the NOx conversion efficiency may be higher with alpha ratios greater than 1. There is however concern that the additional NH3 will be slipped under these conditions.
Technical Paper

Vision Based Path-Following Control System Using Backstepping Control Methodology

2008-04-14
2008-01-0202
This paper describes an automated path following system using vision sensor. Lateral control law for path following is especially underlined which is developed by using the backstepping control design methodology. To establish the proposed control system, the lateral offset to the reference path, the heading angle of vehicle relative to tangent line to the path, and path curvature are required. Those inputs to the controller have been calculated through Kalman filter which is frequently adopted for the purpose. The lane mark detection has been achieved in an ECU (Electric Control Unit) platform with vision sensor. The yaw rate and side-slip angle also needed in the controller are estimated by Kalman estimator. To show the performance of the proposed controller under different speeds, experiment has been conducted on a proving ground having straight and curve sections with the curvature of about 260m.
Technical Paper

Development of Low-Noise Cooling Fan Using Uneven Fan Blade Spacing

2008-04-14
2008-01-0569
When unifying the functions of widely used two-fan, engine cooling system into a single fan unit, the noise and power issues must be addressed. The noise problem due to the increased fan radius is a serious matter especially as the cabin noise becomes quieter for sedans. Of the fan noise components, discrete noise at BPF's (Blade Passing Frequency) seriously degrades cabin sound quality. Unevenly spaced fan is developed to reduce the tones. The fan blades are spaced such that the center of mass is placed exactly on the fan axis to minimize fan vibration. The resulting fan noise is 11 dBA quieter in discrete noise level than the even bladed fan system.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

2009-04-20
2009-01-1029
While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Influence of Seating Position on Dummy Responses with ABTS Seats in Severe Rear Impacts

2009-04-20
2009-01-0250
Objective: This study analyzes rear sled tests with a 95th% male and 5th% female Hybrid III dummy in various seating positions on ABTS (All Belt to Seat) seats in severe rear impact tests. Dummy interactions with the deforming seatback and upper body extension around the seat frame are considered. Methods: The 1st series involved an open sled fixture with a Sebring ABTS seat at 30 mph rear delta V. A 95th% Hybrid III dummy was placed in four different seating positions: 1) normal, 2) leaning inboard, 3) leaning forward and inboard, and 4) leaning forward and outboard. The 2nd series used a 5th% female Hybrid III dummy in a Grand Voyager body buck at 25 mph rear delta V. The dummy was leaned forward and inboard on a LeSabre ABTS or Voyager seat. The 3rd series used a 5th% female Hybrid III dummy in an Explorer body buck at 26 mph rear delta V. The dummy was leaned forward and inboard on a Sebring ABTS or Explorer seat.
Technical Paper

A semi-analytical approach for vehicle ride simulation

2008-10-07
2008-36-0048
Vehicle dynamics CAE capabilities has increased in the past few years, specially, for handling and steering attributes. However, secondary ride simulations are still highly depended on the tire model. Such tire model must be capable to simulate high order phenomenon such as impact and harshness transmissibility in three directions. In order to gather tire information sufficient to cope with these phenomena, one needs to perform a series of specific tests, and so be able to build the intended tire model. Still, there could be correlation issues. This whole process takes a lot of time and resources. This article presents a semi-analytical approach, using data gathered via wheel force transducers (WFTs) that are typically used for load cascading and durability purposes. The method main advantage is that since it relies on measured data at the wheel center, it is independent of a tire model, and, as such, it demands less time and resources.
Technical Paper

Sound Quality Evaluation of Chimes

2010-10-17
2010-36-0549
The customer perception of vehicle quality and safety is associated to the interior and exterior vehicle touching, feeling and hearing. One of the items related to hearing are the chimes, which are the sounds generated for safety and warning purposes. These sounds are typically transient - harmonic or constant signals, giving to the driver and passenger information that something is not accomplished adequately. As those sounds have different purposes, each one of them has different pitch, level of intensity, duration and shape. This paper presents an objective evaluation of this kind of signal based on psychoacoustic parameters as loudness and sharpness. Besides those parameters, total harmonic distortion and wavelets are considered.
Technical Paper

Pickups Vehicle Dynamics: Ride and Skate

2003-11-18
2003-01-3588
The driver judges his vehicle based on subjective aspects. Vehicle dynamics characteristics including ride and handling have a major impact on this evaluation. For this reason, vehicle manufactures have grown investments in order to improve vehicle dynamics behavior. Subjective evaluation and customer satisfaction research show which dynamic characteristics need to be improved. CAE models, after being validated based on experimental measures, give a good insight on vehicle dynamic behavior and guide change proposals. At end, new subjective evaluations and measures are carried out in order to check the real improvement of CAE proposals. This work shows the use of the described methodology for a pickup vehicle dynamics evaluation. One of the major complains of pickup drives is related to ride quality. Thinking of that feature the evaluation process considers several phenomena, such as abruptness, front topping, front bottoming, head toss and rear aftershake.
Technical Paper

Design Optimization of Two Combined Four-Bar Mechanisms Using the Principles of Axiomatic Design

2004-03-08
2004-01-0810
Two combined four-bar mechanisms have two functions: lift and collapse. In the current design, high effort was found for the collapse function. Axiomatic Design was used to analyze and optimize the current design. The customer domain was mapped into the functional domain by specifying customer needs in terms of functional requirements (FRs) and constraints (Cs). Design parameters (DPs) were identified in the physical domain for each functional requirement. Design matrices were then defined to characterize the product design. The two combined four-bar mechanisms have two functional requirements at the highest level: lift and collapse. The corresponding DPs are: lift four-bar linkage and collapse four-bar linkage. Through zigzagging to decompose to the next level, the design was found to be coupled. At this level, a torsion spring was selected as the DP for minimizing the lift effort.
Technical Paper

Effect of Test Section Configuration on Aerodynamic Drag Measurements

2001-03-05
2001-01-0631
Aerodynamic measurements in automotive wind tunnels are degraded by test section interference effects, which increase with increasing vehicle blockage ratio. The current popularity of large vehicles (i.e. trucks and sport utility vehicles) makes this a significant issue. This paper describes the results of an experimental investigation carried out in support of the Ford/Sverdrup Driveability Test Facility (DTF), which includes an aero-acoustic wind tunnel (Wind Tunnel No. 8). The objective was to quantify the aerodynamic interference associated with two candidate test section configurations for Wind Tunnel No. 8-semi-open jet and slotted wall. The experiments were carried out at 1/11-scale in Sverdrup laboratories. Four automobile shapes (MIRA models) and six Sport Utility Vehicle (SUV) shapes representing blockages from 7% to 25% were used to evaluate changes in measured aerodynamic coefficients for the two test section configurations.
X