Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental Investigation of Soot Oxidation Characteristic with NO2 and O2 using a Flow Reactor Simulating DPF

2007-04-16
2007-01-1270
Characteristics of soot oxidation were investigated with a carbon black (Printex-U). A flow reactor system which can simulate the condition of diesel particulate filter and diesel exhaust gas (1 bar, O2 0 ∼ 10%, NO2 200 ∼ 900ppm) was designed and used with the temperature programmed oxidation (TPO) and constant temperature oxidation (CTO) techniques. The temperature increase rate was 5°C/min for TPO experiments. From the experiments, the apparent activation energy for carbon oxidation with nitrogen dioxide was determined as 60 ± 3 kJ/mol with the first order of carbon in the range of 10∼90% oxidation and the temperature range of 250∼500°C. This value was exceedingly lower than the activation energy of oxygen oxidation which was 177 ± 1 kJ/mol. When oxygen exists with nitrogen dioxide, the reaction rate increased with the concentration of oxygen. Its rate of increase was faster for low oxygen concentration and slower for high concentration.
Technical Paper

Characterization of Catalyzed Soot Oxidation with NO2, NO and O2 using a Lab-Scale Flow Reactor System

2008-04-14
2008-01-0482
Today's diesel PM reduction systems are mainly based on catalyzed particulate filter(CPF) systems. However, most of their reaction kinetics remain unresolved. Among others, the soot oxidation rate over catalyst is particularly important in the evaluation of the performance of the catalysts and the efficient control of CPF regeneration. This study, therefore, investigated the oxidation rate of carbon black (Printex-U) over various Pt supported catalysts using a flow reactor setup simulating diesel exhaust conditions. Compared to non-catalyzed soot oxidation, the oxidation rate of carbon black over Pt catalysts was to an extent shifted towards low temperatures. This activity enhancement of soot oxidation over a catalyst can be attributed principally to NO to NO2 conversion because NO2 oxidizes soot with much lower activation energy (Ea=60kJ/mol) than O2 (Ea=177kJ/mol).
Technical Paper

Experimental Study on Soot Oxidation Characterization of Pt/CeO2 Catalyst with NO and O2 Using a Flow Reactor System

2009-04-20
2009-01-1475
The oxidation of soot (carbon black) which is assisted by Pt/CeO2 catalyst is studied using a flow reactor system simulating the condition of diesel exhaust. In this study, the temperature programmed oxidation (TPO) scheme is mainly used for different NO and O2 concentrations and soot oxidation rate is evaluated by monitoring both CO and CO2 concentrations. Pt/CeO2 catalyst lowers the temperature of the peak CO/CO2 concentrations significantly when there is either NO or O2. Oxidation starts at 200°C and the peak CO2 concentration is observed at 360°C, which depends on the amount of catalyst and NO concentration. The effect of catalyst on NO2 recycling is also investigated. For this purpose, two different types of sample have been prepared. For the mixed case, 10mg of carbon black is mixed with 50mg of Pt/CeO2 catalyst under conditions of loose contact. For the unmixed case, the catalyst layer is placed on top of soot layer without mixing.
Technical Paper

Effect of Hydrogen as an Additive on Lean Limit and Emissions of a Turbo Gasoline Direct Injection Engine

2015-09-01
2015-01-1886
For gasoline engine, thermal efficiency can be improved by using lean burn. However, combustion instability occurs when gasoline engine is operated on lean condition. Hydrogen has features that can be used for improving combustion stability of gasoline engine. In this paper, an experimental study of hydrogen effect on lean limit was carried out using a four-cylinder 2.0L turbo gasoline direct injection engine. The engine torque was fixed at 110Nm on 1600RPM, 2000RPM and 2400RPM. The results showed that lean limit was extended and brake thermal efficiency was improved by hydrogen addition. Especially, at lower engine speed, the large improvement of lean limit was achieved. However, improvement of brake thermal efficiency was achieved at high speed. HC and CO2 emissions were decreased and NO emissions increased with hydrogen addition. CO emissions were slightly reduced with hydrogen addition.
X