Refine Your Search

Topic

Author

Search Results

Technical Paper

Engine Sound Reduction and Enhancement Using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

Efficient Method for Active Sound Design Using an NVH Simulator

2020-04-14
2020-01-1360
Active Sound Design (ASD) allows the Personalized Engine Sound System to be implemented for different types of vehicles and in different geographical regions. While this process is possible, it requires a lot of on-road tuning and therefore is very time consuming. This study presents an efficient way of tuning ASD sounds based on binaural synthesis in a lab environment instead of on-road tuning. The on-road vehicle operating sounds are reproduced by a desktop NVH simulator while the binaural ASD sounds are synthesized by convolving measured Binaural Vehicle Impulse Responses with the output of ASD multi-channel amplifier in real time. A set of binaural recordings on road are compared with the reproduced sound in the lab environment. The comparison results showed the validity of the proposed method for ASD. The main advantage of this approach is the possibility of back-to-back comparison across different ASD tunings.
Journal Article

Measurement and Modeling of Perceived Gear Shift Quality for Automatic Transmission Vehicles

2014-05-09
2014-01-9125
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

Development of ‘Motion-Sensor Moustick’ Controller and A Study of Usability Improvement While Driving

2012-04-16
2012-01-0038
This ‘Motion-Sensor Moustick’ is a sort of new concept control device as if a combination of PC mouse and joystick. It has three simple buttons and a haptic wheel designed for a faster and easier use to learn the vehicle infotainment functions. In addition it has a motion sensor to call a menu via hand approach to change media channels or to display status with just a driver's hand motion within a certain distance. Also this development includes a new concept GUI(graphical user interface) which is compatible with the ‘Moustick’ device. This development could be very helpful to use a car infotainment system.
Technical Paper

Simultaneous Free-Size, Gauge, and Composite Optimization for Automotive Chassis Design

2022-03-29
2022-01-0792
Rising gas prices and increasingly stringent vehicle emissions standards have pushed automakers to increase fuel economy. Mass reduction is the most practical method to increase fuel economy of a vehicle. New materials and CAE technology allow for lightweight automotive components to be designed and manufactured, which outperform traditional component designs. Topology optimization and other design optimization techniques are widely used by designers to create lightweight structural automotive parts. Other design optimization techniques include free-size, gauge, and size optimization. These optimization techniques are typically used in sequence or independently during the design process. Performing various types of design optimization simultaneously is only practical in certain cases, where different parts of the structure have different manufacturing constraints.
Technical Paper

Development of a New Flammability Test Method: Enabling Material-Level Evaluation of Polymeric Materials for Electric Vehicle Battery Enclosures

2022-03-29
2022-01-0714
The need to reduce weight and cost of battery systems for electric vehicles has led to continued interest in metal-to-plastic substitution and mixed-material designs for battery enclosures. However, the ever-increasing performance requirements of such systems pose a challenge for plastic materials to meet. In an effort to design a cost-effective, lightweight next-generation battery enclosure while meeting the latest requirements, a new thermal runaway test method was developed, and several materials were screened. The objectives of this development project were twofold. The first was to develop a small-scale test method representative of real-world thermal runaway conditions that could be used early in the design process.
Technical Paper

Exploring New Joining Techniques of CFRP Cross Member Chassis

2022-03-29
2022-01-0337
Increasing fuel prices and escalating emissions standards, are leading car manufacturers to develop vehicles with higher fuel efficiency. Reducing the mass of the vehicle is one technique to improve fuel efficiency. Shifting from metals to composite materials is a promising approach for great reductions to the vehicle mass. As more composite parts are introduced into vehicles, the approach to joining components is changing and requiring more investigation. Metallic chassis components are traditionally joined with mechanical fasteners, while composites are generally joined with adhesives. In a collaboration between Queen’s University and KCarbon, an automotive composite crossmember is being developed. A variety of lap joint geometries were modeled into a the crossmember assembly for composite-composite joints. Finite element-based optimization methods were applied to reduce mass of the crossmember. The optimized masses showed a 5% difference between the three joint geometries analyzed
Technical Paper

A Study on the Robust Crash Performance Structure of Continuous Fiber Thermoplastic Composite Cowl Crossbar

2022-03-29
2022-01-0872
Recently, keen interest has been focused on the reduction of fuel consumption through the development of eco-friendly and weight-effective vehicles. This is due in part to the strengthening of regulatory standards for fuel efficiency in each country. This study will focus on the optimization of the IP (Instrument Panel) module, in particular, the cowl crossbar, which in some vehicles, can account for more than 33% of the IP module weight. The design objectives of the cowl crossbar were to use continuous fiber thermoplastic composite materials to achieve high stiffness, while optimizing the strength to weight performance as evaluated through vehicle sled and crash testing. This research will introduce the development and optimization methodology for an alternative material, which achieved about a 30% weight reduction as compared to steel.
Technical Paper

New Index for Diagnosis of Abnormal Combustion Using a Crankshaft Position Sensor in a Diesel Engine

2019-04-02
2019-01-0720
Most research of internal combustion engine focuses on improving the fuel economy and reducing exhaust emissions to satisfy regulations and marketability. Engine combustion is a key factor in determining engine performance. Generally, engine operating parameters are optimized for the best performance and less exhaust emissions. However, abnormal combustion results in engine conditions that are far from an optimized operation. Abnormal combustion, including a misfire, can happen for a variety of reasons, such as superannuated vehicles, extreme changes in the driving environment, etc. Abnormal combustion causes serious deterioration of not only noise, vibration and harshness (NVH), but also the fuel economy and exhaust emission. NVH stands for unwanted noise, vibration and harshness from the vehicle. The misfiring especially deteriorates vehicle comfortability. Abnormal combustion at one cylinder breaks the exciting force balance between cylinders and causes unexpected vibration.
Technical Paper

Developing a Car to Meet New Pass-By Noise Requirements using Simulation and Testing

2015-06-15
2015-01-2319
A new pass-by noise test method has been introduced, in which engine speeds and loads are reduced (compared to the old test method) to better reflect real world driving behavior. New noise limits apply from 1 July 2016, and tighten by up to 4dB by 2026. The new test method is recognized internationally, and it is anticipated that the limits will also be adopted in most territories around the world. To achieve these tough new pass-by noise requirements, vehicle manufacturers need to address several important aspects of their products. Vehicle performance is critical to the test method, and is controlled by the full load engine torque curve, speed of response to accelerator pedal input, transmission type, overall gear ratios, tire rolling radius, and resistance due to friction and aerodynamic drag. Noise sources (exhaust, intake, powertrain, driveline, tires) and vehicle noise insulation are critical to the noise level radiated to the far-field.
Technical Paper

The Novel Centrifugal Air Compressor Development for the Fuel Cell Electric Vehicles

2014-10-13
2014-01-2868
Fuel Cell Electric Vehicles (FCEV) is zero emission vehicles because it produces only water as a byproduct. The other advantages are a long driving range and a quick refueling time compared with the pure electric vehicle. The air compressor supply compressed air to the cathode of fuel cell stack to chemically react with the hydrogen from the compressed hydrogen tank to generate electric power. The centrifugal air compressor can provide oil free clean air and has significantly improved durability/NVH performance compared with competitor's screw type air compressors. It has other advantages such as compact size and high efficiency at the actual vehicle design condition. In this paper we will describe the centrifugal air compressor's NVH improvement process including rotor resonant mode, rotor unbalance, stator's structural noise, and bearing problems.
Technical Paper

A Study on the Rear Passenger Protection Mechanism in a Wagon Vehicle

2015-04-14
2015-01-1480
Recently, the wagon for European has been developed. The characteristic of this vehicle is to have a capability of large luggage space. Therefore the passenger needs to be protected from injuries by sudden inflow of baggage from luggage room. This is also a requirement of EU regulation (ECE R-17[4]). Barrier Net[1, 2, 3] to small size wagon has been adopted for the first time based on advanced foreign supplier's technology. This reality still gives us the burden of high cost and royalty expenditure. The objective of this study is to overcome these restrictions, especially for patent circumvention and secure the new design concept which is entirely independent of the present system in addition to cost effectiveness.
Technical Paper

Development of Boiling Prediction Method in LP-EGR Cooler and Shape Optimization for Suppressing Boiling using Boiling Index

2021-04-06
2021-01-0228
An EGR system has been significantly used in order to cope with reinforced exhaust gas regulation and enhancement of fuel efficiency. For the well-designed EGR cooler, performance analysis is basically required. Furthermore, boiling prediction of the EGR cooler is especially essential to evaluate durability failure of abnormal operating conditions in DPF. However, due to intrinsic complexity of detailed 3-dimensional heat transfer tubes in the EGR cooler, no precise technique of boiling prediction has been developed. Therefore, this research had been performed in order to fulfill 3 goals: (1) development of 3-dimentional performance prediction technique including boiling occurrence, (2) generation and validation of a new evaluation index for boiling, (3) development of an optimized EGR cooler for suppressing boiling. In order to increase analysis accuracy and reduce analysis efforts at the same time, 3-dimensional single-phase flow analysis was developed.
Technical Paper

Efficient Method for Head-Up Display Image Compensation by Using Pre-Warping

2019-04-02
2019-01-1008
A Head-Up Display (HUD) is electrical device that provides virtual images in front of driver. Virtual images are consists of various driving information. Because HUD uses optical system there exist image distortions with respect to image height and driver’s eye position. Image warping is image correction method that makes a geometrical change on image to minimize image distortions. In this paper to minimize image distortions, we use optical data driven warping matrix for each image height. But even though we applied data driven warping matrix, image distortions occur due to assemble and manufacturing tolerances when HUD is built. In this paper, we also suggest pre-warping method to minimize image distortions considering tolerances. We simulated 3 compensation functions to get rid of image distortions from the tolerances. By using proposed pre-warping method we could reduce maximum x, y distance by 31.5%, 39% and average distance by 32.2%, 27.9% of distortions.
Technical Paper

Using a Representative Driving Pattern Extraction Technique Modeling with Machine Learning, Development of Durability Test Mode

2021-04-06
2021-01-0160
The powertrain durability test mode often defines the method by reflecting figures such as frequency of use or severity, but in complex systems, durability is difficult to verify in real life conditions under simple conditions. Therefore, in this session, a new analysis method modeled for each driving unit is presented, rather than analyzing time series data in time to extract representative driving pattern from the perspective of the powertrain load reflecting driving situation and driver’s will by applying machine learning technique, and to develop realistic durability test evaluation mode.
Journal Article

Lightweight Wheel Bearing with Dissimilar Materials for Vehicle

2019-09-15
2019-01-2134
Limited fossil fuel resources, air pollution, and global warming all drive strengthening of fuel economy and vehicle emission standards globally. Much R&D continues to be dedicated to improve fuel efficiency of automobiles and to reduce exhaust gasses. These include improvement of engine/driveline performance for higher efficiency, development of alternative energy, and minimization of air resistance through aerodynamic design optimization. OEM weight reduction-focused research has extended into chassis components (steering knuckle, brakes, control arms, etc.) in sequence from body-in-white(BIW). Wheel bearings, one of the core components of a driveline and part of a vehicle’s unsprung mass, are also being required to reduce weight. Conventionally, wheel bearings have achieved “lightweighting” primarily through design optimization methods. They have been highly optimized today using steel based materials.
Technical Paper

Characterization of High-Tumble Flow Effects on Early Injection for a Lean-Burn Gasoline Engine

2023-04-11
2023-01-0238
The influence of early induction stroke direct injection on late-cycle flows was investigated for a lean-burn, high-tumble, gasoline engine. The engine features side-mounted injection and was operated at a moderate load (8.5 bar brake mean effective pressure) and engine speed (2000 revolutions per minute) condition representative of a significant portion of the duty cycle for a hybridized powertrain system. Thermodynamic engine tests were used to evaluate cam phasing, injection schedule, and ignition timing such that an optimal balance of acceptable fuel economy, combustion stability, and engine-out nitrogen oxide (NOx) emissions was achieved. A single cylinder of the 4-cylinder thermodynamic engine was outfitted with an endoscope that enabled direct imaging of the spark discharge and early flame development.
Journal Article

Parts Consolidation of Automotive Front Crossmember: From Two-Piece CFRP Design to One-Piece Design

2022-03-29
2022-01-0342
As demand for fuel efficiency rises, an increasing number of automotive companies are replacing their existing metal designs with carbon-fiber-reinforced polymer (CFRP) redesigns. Due to the handling and manufacturing processes associated with CFRP materials, engineers have more design freedom to create complex, light-weight designs, which would be infeasible to manufacture using metal. Additionally, it is likely that by redesigning with CFRP, many steel assemblies can be consolidated to significantly fewer parts, simplifying or potentially eliminating the assembly process. When designing an automotive crossmember using CFRP materials, designers often aim for a two-piece design (top and bottom), while utilizing reinforcement material where needed. The joining of these two pieces is typically accomplished with many mechanical fasteners and adhesives, significantly increasing the part count and the manufacturing complexity.
Journal Article

Personalized EV Driving Sound Design Based on the Driver's Total Emotion Recognition

2022-06-15
2022-01-0972
An active sound design (ASD) technique enables the implementation of a specific sound in addition to the real engine/e-motor sound in a vehicle. However, it is difficult to satisfy the various needs of customers because it can provide only a few sounds designed by the manufacturer. This paper presents the method of providing the appropriate driving sound and soundscape in an electric vehicle according to the driver’s emotion and driving environment in real-time. For this purpose, it is studied how to construct a driving sound library from the various sound sources and how to recognize a driver's total emotion from the multi-modal data such as facial expression, heart rate, and electrodermal activity using the CNN and support vector machine algorithms. Then it is discussed how to generate the driving sound of electric vehicle according to the driver’s emotion.
Journal Article

FBS Decoupling at Suspension Level for Road Noise Applications

2022-06-15
2022-01-0978
With the electrification trend in the automotive industry, the main contributors to in-vehicle noise profile are represented by drivetrain, road and wind noise. To tackle the problem in an early stage, the industry is developing advanced techniques guaranteeing modularity and independent description of each contributor. Component-based Transfer Path Analysis (C-TPA) allows individual characterization of substructures that can be assembled into a virtual vehicle assembly, allowing the manufacturers to switch between different designs, to handle the increased number of vehicle variants and increasing complexity of products. A major challenge in this methodology is to describe the subsystem in its realistic operational boundary conditions and preload. Moreover, to measure such component, it should be free at the connection interfaces, which logically creates significant difficulties to create the required conditions during the test campaign.
X