Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

2014-04-01
2014-01-0381
Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Technical Paper

Engine Sound Reduction and Enhancement Using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

Fault Diagnosis of an Engine through Analyzing Vibration Signals at the Block

2020-09-30
2020-01-1568
Unpredictable faults oriented from ambiguous reasons could occur in an engine of a vehicle. However, there are some symptoms from which an engine is working abnormally before the engine is stalled by faults. In this paper, methods for diagnosis of engine faults by using vibrations are proposed. Through bench tests, to extract features for fault diagnosis, various samples with normal and abnormal conditions are prepared and vibration signals from the block of an engine are measured and analyzed. To consider cost and performance of a sensor, vibrations from a knock sensor signal as well as accelerometers are analyzed. Measured vibration signals are synchronized with signal of the crank position sensor and analyzed to detect which event is involved. Modulation analysis and Hilbert transform are applied to extract features representing the symptoms of engine faults and to indicate when the abnormal event happens, respectively.
Technical Paper

Efficient Method for Active Sound Design Using an NVH Simulator

2020-04-14
2020-01-1360
Active Sound Design (ASD) allows the Personalized Engine Sound System to be implemented for different types of vehicles and in different geographical regions. While this process is possible, it requires a lot of on-road tuning and therefore is very time consuming. This study presents an efficient way of tuning ASD sounds based on binaural synthesis in a lab environment instead of on-road tuning. The on-road vehicle operating sounds are reproduced by a desktop NVH simulator while the binaural ASD sounds are synthesized by convolving measured Binaural Vehicle Impulse Responses with the output of ASD multi-channel amplifier in real time. A set of binaural recordings on road are compared with the reproduced sound in the lab environment. The comparison results showed the validity of the proposed method for ASD. The main advantage of this approach is the possibility of back-to-back comparison across different ASD tunings.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Model Predictive Control of an Air Path System for Multi-Mode Operation in a Diesel Engine

2020-04-14
2020-01-0269
A supervisory Model Predictive Control (MPC) approach is developed for an air path system for multi-mode operation in a diesel engine. MPC is a control method based on a predictive dynamic model of system and determines actuator control positions through the optimization of various factors such as tracking performances of target setpoints, moving speed of actuators, limits, etc. Previously, linear MPC has been successfully applied on the air path control problem of a diesel engine, however, most of these applications were developed for a single operation mode which has only one set of control target setpoint values. In reality, a single operation mode cannot cover all requirements of current diesel engines and this complicates practical implementations of linear MPC. The high priority targets for the development of diesel engines are low emissions, high thermal efficiency and robustness.
Technical Paper

An Experimental Investigation of In-Cylinder Flow Motion Effect on Dual-Fuel Premixed Compression Ignition Characteristics

2020-04-14
2020-01-0306
The combustion process using two fuels with different reactivity, known as dual-fuel combustion or RCCI is mainly studied to reduce emissions while maintaining thermal efficiency compared to the conventional diesel combustion. Many studies have proven that dual-fuel combustion has a positive prospect in future combustion to achieve ultra-low engine-out emissions with high indicated thermal efficiency. However, a limitation on high-load expansion due to the higher maximum in-cylinder pressure rise rate (mPRR) is a main problem. Thus, it is important to establish the operating strategy and study the effect of in-cylinder flow motion with dual-fuel combustion to achieve a low mPRR and emissions while maintaining high-efficiency. In this research, the characteristics of gasoline-diesel dual-fuel combustion on different hardware were studied to verify the effect of the in-cylinder flow motion on dual-fuel combustion.
Journal Article

Measurement and Modeling of Perceived Gear Shift Quality for Automatic Transmission Vehicles

2014-05-09
2014-01-9125
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
Technical Paper

The Characteristics of Carbon Deposit Formation in Piston Top Ring Groove of Gasoline and Diesel Engine

1998-02-23
980526
In order to investigate the characteristics of top ring groove deposit formation in gasoline and diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, oxidation and nitration for gasoline engine and soot content for diesel engine were selected as main parameters for evaluating oil degradation. In gasoline engine, deposit formation increases linearly with oxidation and nitration, and especially, oil oxidation is a dominant factor on the deposit formation rather than nitration. And, deposit formation increases gradually in low temperature ranges below 260°C even if oils are highly oxidized, but it increases rapidly if piston top ring groove temperature is above 260°C. In diesel engine, deposit formation is highly related to soot content in lubricating oils.
Technical Paper

The Effects of Injection Parameters on a Heavy-Duty Diesel Engine with TICS System

1998-02-23
981070
In this study, a series of tests have been carried out to evaluate the effects of the injection rate and timing on bsfc, NOx, and PM emissions in a heavy-duty diesel engine with TICS FIE system. Injection line pressure, cylinder pressure, NOx and smoke were measured with various injection times and injection rates. The injection rate was altered at a fixed injection timing, which could be realized either by changing the TICS setting time or by using different cam profiles. The injection time was varied by using TICS timing control function at a given setting time. A parametric study of the injection rate in in-line pump system was tried to correlate injection rate variations with combustion characteristics and emission. Two parameters, the injection pressure rising rate and the initially injected fuel quantity were introduced to characterize fuel injection.
Technical Paper

Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles

2008-04-14
2008-01-1453
Supervisory control strategy of a hybrid electric vehicle (HEV) provides target powers and operating points of an internal combustion engine and an electric motor. To promise efficient driving of the HEV, it is needed to find the proper values of control parameters which are used in the strategy. However, it is very difficult to find the optimal values of the parameters by doing experimental tests, since there are plural parameters which have dependent relationship between each other. Furthermore variation of the test results makes it difficult to extract the effect of a specific parameter change. In this study, a model based parameter optimization method is introduced. A vehicle simulation model having the most of dynamics related to fuel consumption was developed and validated with various experimental data from real vehicles. And then, the supervisory control logic including the control parameters was connected to the vehicle model.
Technical Paper

Vehicle Drift Investigation during Straight Line Accelerating and Braking

2008-04-14
2008-01-0588
A vehicle drifts due to several reasons from its intended straight path even in the case of no steering input. The multibody dynamic analysis of vehicle drift during accelerating and braking are performed. This paper focuses on modeling and evaluating effects of suspension parameters, differential friction, engine mounting and C.G. location of the vehicle under multibody dynamic simulation environment. Asymmetry of geometry and compliance between left and right side is considered cause of drift. The sensitivities of the suspension parameters are presented for each driving condition. In case of acceleration, the interaction of differential friction and driveshaft stiffness and their influence on drift are also studied. For braking condition, suspension parameters such as initial toe variation of rear coupled torsion beam axle type suspension and kingpin inclination deviation of front suspension are studied including the braking force difference.
Technical Paper

Dynamic Characteristics of Oil Consumption - Relationship Between the Instantaneous Oil Consumption and the Location of Piston Ring Gap

1998-10-19
982442
In order to understand the relationship between the location of piston ring gap and instantaneous change of oil consumption during engine operation, the ring rotation and instantaneous oil consumption were measured simultaneously in a hydrogen fueled single cylinder spark ignition engine. A radioactive-tracer technique was used to measure the rotational movement of piston ring. Two kinds of isotopes(60Co and 192Ir) with different energy level were mounted to the top and 2nd rings to measure each ring's movement independently. The instantaneous oil consumption was obtained by analyzing CO2 concentration in exhaust gas. From the result of ring rotational movement, typical patterns of ring rotation were obtained as follows; Rotational movements are usually initiated by changing the operating conditions. Piston rings tend to rotate easily under low load condition. The rotation speed of ring usually ranged in 0.2∼0.4 rev/min for top ring and 0.5∼0.6 rev/min for 2nd ring.
Technical Paper

Development of an Automatic Climate Control(ACC) Algorithm and the Roof Mounted System for Busses

1998-11-16
982777
Air conditioning is defined as the process of treating air so as to control simultaneously its temperature, humidity, cleanliness and distribution to meet the requirements of the conditioned space. As in the definition, the important actions involved in the operation of an air conditioning system are temperature and humidity control, air purification and movement. For these conditions this paper proposes a Automatic Climate Control(ACC) system of the bus. The system has cooling, heating, and dehumidifying modes, and is governed by dual 8-bit microprocessors. These modes are broken down into sub-modules dealing with control of the compressor, blower speed, damper position, air purifier, ventilators, preheater, air mixing damper and so on.
Technical Paper

The Optimization of Open COWL Structure to Give Free Shape to the Design of a Pillar Outer Panel Front

2009-04-20
2009-01-1231
At present, the assembling order of COWL is decided according to the design of the Vehicle’s A pillar outer. Therefore when the factory layout changes, extensive costs are needed according to the changes of the A pillar outer design. Thus, this study was carried out to develop a new COWL structure that is able to determine the layout of the factory without changing the design of the A pillar outer. In addition, by adjusting the DFSS tool to COWL, the direction of the material and thickness of COWL was studied to optimize the dynamic stiffness of the body structure and pedestrian protection performance. Based on this study, the optimization of the OPEN COWL is presented.
Technical Paper

Transient Control Strategy of Hybrid Electric Vehicle during Mode Change

2009-04-20
2009-01-0228
Transient control for EV/HEV mode change takes an important role in the system of the parallel HEV, which consists of internal combustion engine (ICE), electric motor (EM), integrated starter & generator (ISG), battery, automatic transmission and clutch (that replaces the torque converter), not only ICE/EM control but also clutch engagement control are the key of it. To improve the mode change performance, this study proposes clutch slip control methods. Method 1. focuses on the open loop clutch pressure control so as to adjust target clutch transfer torque. The main idea of Method 2. is to control the clutch pressure in order to achieve the desired speed difference(Method 2-1) from each side of clutch when motor speed is faster than engine idle speed and keep target engine speed(Method 2-2) when motor speed is slower than engine idle speed. This paper defines control sequence which is scheduling the behavior of powertrain components as well.
Technical Paper

Development of primerless paintable thermoplastic polyolefin with high impact strength for vehicle interior parts

2000-06-12
2000-05-0151
A new thermoplastic polyolefin with primerless adhesion to paint has been developed by polypropylene (PP) with α-olefin copolymers, mineral fillers and some additives. It can substantially reduce costs and environmental problems by eliminating primer treating operations, traditionally treated from trichloroethene (TCE). This new material exhibits unique solid-state texture that rubbery polymer component are typically dispersed in lamellar structure matrix. Versus conventional PP or thermoplastic olefin (TPO), it provides excellent brittle-ductile (BD) transition as well as paintability. Also it is expected to have a significant impact on interior parts as requirements for material change to an emphasis on light weight, lower cost, more efficient finishing.
X