Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Integrated Low Temperature Cooling System Development in Turbo Charged Vehicle Application

2014-04-01
2014-01-0638
The Low Temperature Cooling (LTC) system is commonly developed for secondary cooling function requirements, such as forced induction air cooling, and HEV power electronics module cooling. The large heat transfer capacity of coolant allows for very compact water-cooled heat exchangers to be installed remotely for better underhood aerodynamic characteristics and more compact packaging design. An integrated LTC loop developed on a Hyundai 2.0L Turbo Charged vehicle extends a traditional WCAC (Water-cooled charged air cooler) application to include a water-cooled condenser (WCOND) module. Unlike other published LTC system design approaches, this research project emphasizes underhood airflow improvement strategy and focuses on heat transfer efficiency. This paper discusses the integrated LTC loop configuration, Low Temperature Radiator (LTR) design, coolant flow control, and others.
Journal Article

Fast and Efficient Detection of Shading of the Objects

2015-04-14
2015-01-0371
The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
Technical Paper

Calibration of Electrochemical Models for Li-ion Battery Cells Using Three-Electrode Testing

2020-04-14
2020-01-1184
Electrochemical models of lithium ion batteries are today a standard tool in the automotive industry for activities related to the computer-aided engineering design, analysis, and optimization of energy storage systems for electrified vehicles. One of the challenges in the development or use of such models is the need of detailed information on the cell and electrode geometry or properties of the electrode and electrolyte materials, which are typically unavailable or difficult to retrieve by end-users. This forces engineers to resort to “hand-tuning” of many physical and geometrical parameters, using standard cell-level characterization tests. This paper proposes a method to provide information and data on individual electrode performance that can be used to simplify the calibration process for electrochemical models.
Journal Article

Power Dense and Robust Traction Power Inverter for the Second-Generation Chevrolet Volt Extended-Range EV

2015-04-14
2015-01-1201
The Chevrolet Volt is an electric vehicle with extended-range that is capable of operation on battery power alone, and on engine power after depletion of the battery charge. First generation Chevrolet Volts were driven over half a billion miles in North America from October 2013 through September 2014, 74% of which were all-electric [1, 12]. For 2016, GM has developed the second-generation of the Volt vehicle and “Voltec” propulsion system. By significantly re-engineering the traction power inverter module (TPIM) for the second-generation Chevrolet Volt extended-range electric vehicle (EREV), we were able to meet all performance targets while maintaining extremely high reliability and environmental robustness. The power switch was re-designed to achieve efficiency targets and meet thermal challenges. A novel cooling approach enables high power density while maintaining a very high overall conversion efficiency.
Journal Article

Impact of Different Desired Velocity Profiles and Controller Gains on Convoy Driveability of Cooperative Adaptive Cruise Control Operated Platoons

2017-03-28
2017-01-0111
As the development of autonomous vehicles rapidly advances, the use of convoying/platooning becomes a more widely explored technology option for saving fuel and increasing the efficiency of traffic. In cooperative adaptive cruise control (CACC), the vehicles in a convoy follow each other under adaptive cruise control (ACC) that is augmented by the sharing of preceding vehicle acceleration through the vehicle to vehicle communication in a feedforward control path. In general, the desired velocity optimization for vehicles in the convoy is based on fuel economy optimization, rather than driveability. This paper is a preliminary study on the impact of the desired velocity profile on the driveability characteristics of a convoy of vehicles and the controller gain impact on the driveability. A simple low-level longitudinal model of the vehicle has been used along with a PD type cruise controller and a generic spacing policy for ACC/CACC.
Technical Paper

Development of Advanced Idle Stop-and-Go Control Utilizing V2I

2020-04-14
2020-01-0581
Idle Stop-and-go (ISG), also known as Auto Stop/Start, is a fuel saving technology common to many modern vehicles that enables the engine to shut down when the vehicle comes to a stop. Although it may help with fuel efficiency, many drivers in the North American market find the feature to be an annoyance due to hesitation in vehicle re-launch and engine shudder during stop or restart. This paper introduces the usage of traffic signal phase and timing (SPaT) information for controlling the activation of ISG with the goal of reducing driver complaints and increasing acceptance of the function. Previous studies proposed the utilization of Advanced Driver Assistance System (ADAS) to introduce adaptability in powertrain controls to traffic situation changes.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

A Co-Simulation Platform for Powertrain Controls Development

2020-04-14
2020-01-0265
With the advancement of simulation software development, the efficiency of vehicle and powertrain controls research and development can be significantly improved. Traditionally, during the development of a new control algorithm, dyno or on-road testing is necessary to validate the algorithm. Physical testing is not only costly, but also time consuming. In this study, a virtual platform is developed to reduce the effort of testing. To improve the simulation accuracy, co-simulation of multiple software is suggested as each software specializes in certain area. The Platform includes Matlab Simulink, PTV Vissim, Tass Prescan and AVL Cruise. PTV Vissim is used to provide traffic environment to PreScan. PreScan is used for ego vehicle simulation and visualization. Traffic, signal and road network are synchronized in Vissim and PreScan. Powertrain system is simulated in Cruise. MATALB/Simulink serves as master of this co-simulation, and integrates the different software together.
Journal Article

Tuned Silencer Using Adaptive Variable Volume Resonator

2008-04-14
2008-01-0896
In this study, an adaptive control mechanism is proposed to design a silencer applying variable volume resonator concept. Transfer matrix method is used to calculate the transmission loss and evaluate acoustic performance of the proposed mechanism. Effects of damping factor, area ratio of expansion chambers are examined first for a fixed double chamber resonator. Then a two-dimensional search scheme is developed to find optimal piston position that achieves maximum transmission loss with minimal effort. This study shows that the proposed adaptive silencer can efficiently attenuate noise when comparing with a conventional fixed resonator.
Journal Article

Pneumatic Brake Apply System Response and Aero-Acoustic Performance Considerations

2008-04-14
2008-01-0821
Over the past decade, the automotive industry has seen a rapid decrease in product development cycle time and an ever increasing need by original equipment manufacturers and their suppliers to differentiate themselves in the marketplace. This differentiation is increasingly accomplished by introducing new technology while continually improving the performance of existing automotive systems. In the area of automotive brake system design, and, in particular, the brake apply subsystem, an increased focus has been placed on the development of electrohydraulic apply systems and brake-by-wire systems to replace traditional pneumatic and hydraulic systems. Nevertheless, the traditional brake apply systems, especially vacuum-based or pneumatic systems, will continue to represent the majority of brake apply system production volume into the foreseeable future, which underscores the need to improve the performance and application of these traditional systems in passenger cars and light-trucks.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Journal Article

Design and Operation of a Brake and Throttle Robot

2009-04-20
2009-01-0429
This paper describes the design and implementation of the SEA, Ltd. Brake and Throttle Robot (BTR). Presented are the criteria used in the initial design and the development and testing of the BTR, as well as some test results achieved with the device. The BTR is designed for use in automobiles and light trucks. It is based on a servomotor driven ballscrew, which in turn operates either the brake or accelerator. It is easily portable from one vehicle to another and compact enough to fit even smaller vehicles. The BTR is light enough so as to have minimal effect on the measurement of vehicle parameters. The BTR is designed for use as a stand-alone unit or as part of a larger control system such as the Automated Test Driver (ATD) yet allows for the use of a test driver for safety, as well as test selection, initiation, and monitoring. Installation in a vehicle will be described, as well as electronic components that support the BTR.
Journal Article

Safety Analysis of Software-intensive Motion Control Systems

2009-04-20
2009-01-0756
The auto industry has had decades of experience with designing safe vehicles. The introduction of highly integrated features brings new challenges that require innovative adaptations of existing safety methodologies and perhaps even some completely new concepts. In this paper, we describe some of the new challenges that will be faced by all OEMs and suppliers. We also describe a set of generic top-level potential hazards that can be used as a starting point for the Preliminary Hazard Analysis (PHA) of a vehicle software-intensive motion control system. Based on our experience with the safety analysis of a system of this kind, we describe some general categories of hazard causes that are considered for software-intensive systems and can be used systematically in developing the PHA.
Technical Paper

Estimation of Fuel Economy on Real-World Routes for Next-Generation Connected and Automated Hybrid Powertrains

2020-04-14
2020-01-0593
The assessment of fuel economy of new vehicles is typically based on regulatory driving cycles, measured in an emissions lab. Although the regulations built around these standardized cycles have strongly contributed to improved fuel efficiency, they are unable to cover the envelope of operating and environmental conditions the vehicle will be subject to when driving in the “real-world”. This discrepancy becomes even more dramatic with the introduction of Connectivity and Automation, which allows for information on future route and traffic conditions to be available to the vehicle and powertrain control system. Furthermore, the huge variability of external conditions, such as vehicle load or driver behavior, can significantly affect the fuel economy on a given route. Such variability poses significant challenges when attempting to compare the performance and fuel economy of different powertrain technologies, vehicle dynamics and powertrain control methods.
Technical Paper

Process Simulation to Improve Quality and Increase Productivity in Rolling, Ring Rolling and Forging

1991-02-01
910142
The practical and proven use of computers in forming technology include: CAD/CAM for die making; transfer of geometric data from the customer's CAD/CAM system to that of the supplier and vice versa; application of artificial intelligence and expert systems for part and process design; simulation of metal flow to eliminate forging defects; prediction and optimization of process variables; and analysis of stresses in dies as well as prevention of premature die failure. Intelligent use of this information can lead to significant gains in product quality and productivity. This paper presents three examples of application of process simulation to forming : rolling, ring rolling and forging.
Journal Article

Comparison of Heavy Truck Engine Control Unit Hard Stop Data with Higher-Resolution On-Vehicle Data

2009-04-20
2009-01-0879
Engine control units (ECUs) on heavy trucks have been capable of storing “last stop” or “hard stop” data for some years. These data provide useful information to accident reconstruction personnel. In past studies, these data have been analyzed and compared to higher-resolution on-vehicle data for several heavy trucks and several makes of passenger cars. Previous published studies have been quite helpful in understanding the limitations and/or anomalies associated with these data. This study was designed and executed to add to the technical understanding of heavy truck event data recorders (EDR), specifically data associated with a modern Cummins power plant ECU. Emergency “full-treadle” stops were performed at many combinations of load-speed-surface coefficient conditions. In addition, brake-in-curve tests were performed on wet Jennite for various conditions of disablement of the braking system.
Journal Article

The Influence of Disablement of Various Brakes on the Dry Stopping Performance and Stability of a Tractor-Semitrailer

2009-04-20
2009-01-0099
This research was performed using a designed experiment to evaluate the loss of dry surface braking performance and stability that could be associated with the disablement of specific brake positions on a tractor-semitrailer. The experiment was intended to supplement and update previous research by Heusser, Radlinski, Flick, and others. It also sought to establish reasonable limits for engineering estimates on stopping performance degradation attributable to partial or complete brake failure of individual S-cam air brakes on a class 8 truck. Stopping tests were conducted from 30 mph and 60 mph, with the combination loaded to GCW (80,000 lb.), half-payload, and with the flatbed semitrailer unladen. Both tractor and semitrailer were equipped with antilock brakes. Along with stopping distance, brake pressures, longitudinal acceleration, road wheel speed, and steering wheel position and effort were also recorded.
X