Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Study of the Mixing and Combustion Processes of Consecutive Short Double Diesel Injections

2009-04-20
2009-01-1352
The mixing and combustion processes of short double Diesel injections are investigated by optical diagnostics. A single hole Common Rail Diesel injector allowing high injection pressure up to 120MPa is used. The spray is observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. Three configurations are studied: a single short injection serving as a reference case and two double short injections with short and long dwell time (time between the injections). Several optical diagnostics were performed successively. The mixing process is studied by normalized Laser Induced Exciplex Fluorescence giving access to the vapor fuel concentration fields. In addition, the flow fields both inside and outside the jets are characterized by Particle Imaging Velocimetry.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

2009-06-15
2009-01-1963
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Journal Article

Cold Operation with Optical and Numerical Investigations on a Low Compression Ratio Diesel Engine

2009-11-02
2009-01-2714
With a high thermal efficiency and low CO2 (carbon dioxide) emissions, Diesel engines become leader of transport market. However, the exhaust-gas legislation evolution leads to a drastic reduction of NOx (nitrogen oxide) standards with very low particulate, HC (unburned hydrocarbons) and CO (carbon monoxide) emissions, while combustion noise and fuel consumption must be kept under control. The reduction of the volumetric compression ratio (CR) is a key factor to reach this challenge, but it is today limited by the capabilities to provide acceptable performances during very cold operation: start and idle below −10°C. This paper focuses on the understanding of the main parameter’s impacts on cold operation. Effects of parameters like hardware configuration and calibration optimization are investigated on a real 4 cylinder Diesel 14:1 CR engine, with a combination of specific advanced tools.
Journal Article

Formation of Unburned Hydrocarbons in Low Temperature Diesel Combustion

2009-11-02
2009-01-2729
Low temperature combustion is a promising way to reach low NOx emissions in Diesel engines but one of its drawbacks, in comparison to conventional Diesel combustion is the drastic increase of Unburned Hydrocarbons (UHC). In this study, the sources of UHC of a low temperature combustion system were investigated in both a standard, all-metal single-cylinder Diesel engine and an equivalent optically-accessible engine. The investigations were conducted under low load operating conditions (2 and 4 bar IMEP). Two piston bowl geometries were tested: a wall-guided and a more conventional Diesel chamber geometry. Engine parameters such as the start of injection (SOI) timing, the level of charge dilution via exhaust gas re-circulation (EGR), intake temperature, injection pressure and engine coolant temperature were varied. Furthermore, the level of swirl and the diameter of the injector nozzle holes were also varied in order to determine and quantify the sources of UHC.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Journal Article

A Method for Vibration and Harshness Analysis Based on Indoor Testing of Automotive Suspension Systems

2010-04-12
2010-01-0639
The paper presents a method for the indoor testing of road vehicle suspension systems. A suspension is positioned on a rotating drum which is located in the Laboratory for the Safety of Transport at Politecnico di Milano. Special six-axis load cells have been designed and used for measuring the forces/moments acting at each suspension-chassis joints. The forces/moments, wheel accelerations, displacements are measured up to 100 Hz. Two different types of test can be performed. The tire/wheel unbalance effect on the suspension system behavior (Vibration and Harshness, VH) has been analyzed by testing the suspension system from zero to the vehicle maximum speed on a flat surface and by monitoring the forces transmitted to the chassis. In the second kind of test, the suspension system has been excited as the wheel passes over different cleats fixed on the drum.
Journal Article

Study of Air Entrainment of Multi-hole Diesel Injection by Particle Image Velocimetry - Effect of Neighboring Jets Interaction and Transient Behavior After End of Injection.

2010-04-12
2010-01-0342
The air entrainment of multi-hole diesel injection is investigated by high speed Particle Image Velocimetry (PIV) using a multi-hole common rail injector with an injection pressure of 100 MPa. The sprays are observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a diesel engine during injection. Typical ambient temperature of 800K and ambient density of 25 kg/m3 are chosen. The air entrainment is studied with the PIV technique, giving access to the velocity fields in the surrounding air and/or in the interior of two neighboring jets. High acquisition rate of 5000 Hz, corresponding to 200 μs between two consecutive image pairs is obtained by a high-speed camera coupled with a high-speed Nd:YLF laser. The effect of neighboring jets interaction is studied by comparing four injectors with different numbers of holes (4, 6, 8 and 12) with similar static mass flow rate per hole.
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Technical Paper

Impact of Multiple Injection Strategies on Efficiency and Combustion Characteristics in an Optical PPC Engine

2020-04-14
2020-01-1131
Partially premixed combustion (PPC) is a promising way to achieve high thermal efficiency and low emissions, especially by using multiple injection strategies. The mechanisms behind PPC efficiency are still to be explained and explored. In this paper, multiple injections have been used to affect the gross indicated efficiency in an optical PPC engine modified from a Volvo MD13 heavy-duty diesel engine. The aim is both to improve and impair the gross indicated efficiency to understand the differences. The combustion natural luminosity is captured by a high-speed camera, and the distribution of fuel, oxygen, and temperature during the combustion process has been further explored by CFD simulation. The results show that with the right combination of the pilot, main, and post injection the gross indicated efficiency can be improved.
Technical Paper

Investigation of the Effect of Glow Plugs on Low Load Gasoline PPC

2020-09-15
2020-01-2067
Low temperature combustion (LTC), is a promising alternative for combustion engines, because it combines the positive aspects of both CI and SI engines, high efficiency and low emissions. Another positive aspect of LTC is that it can operate with gasoline of different octane ratings. Still, higher octane gasolines prove to be difficult to operate at low load conditions leading to high combustion instability (COV) that leads also to high emissions. This drawback can be reduced by increasing the intake air temperature or increasing compression ratio, but it is not a viable strategy in conventional applications. For a diesel engine running under LTC conditions, a possibility is to use the existing hardware, glow plugs in this case, to increase the in-cylinder temperature at low loads and facilitate an improved combustion event.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
Technical Paper

Modeling the Effects of the Ignition System on the CCV of Ultra-Lean SI Engines using a CFD RANS Approach

2021-09-21
2021-01-1147
Cycle-To-Cycle Variability (CCV) must be properly considered when modeling the ignition process in SI engines operating with ultra-lean mixtures. In this work, a strategy to model the impact of the ignition type on the CCV was developed using the RANS approach for turbulence modelling, performing multi-cycle simulations for the power-cycle only. The spark-discharge was modelled through a set of Lagrangian particles, introduced along the sparkgap and interacting with the surrounding Eulerian gas flow. Then, at each discharge event, the velocity of each particle was modified with a zero-divergence perturbation of the velocity field with respect to average conditions. Finally, the particles velocity was evolved according to the Simplified Langevin Model (SLM), which keeps memory of the initial perturbation and applies a Wiener process to simulate the stochastic interaction of each channel particle with the surrounding gas flow.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Journal Article

Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC

2016-10-17
2016-01-2288
The focus has recently been directed towards the engine out soot from Diesel engines. Running an engine in PPC (Partially Premixed Combustion) mode has a proven tendency of reducing these emissions significantly. In addition to combustion strategy, several studies have suggested that using alcohol fuels aid in reducing soot emissions to ultra-low levels. This study analyzes and compares the characteristics of PM emissions from naphtha gasoline PPC, ethanol PPC, methanol PPC and methanol diffusion combustion in terms of soot mass concentration, number concentration and particle size distribution in a single cylinder Scania D13 engine, while varying the intake O2. Intake temperature and injection pressure sweeps were also conducted. The fuels emitting the highest mass concentration of particles (Micro Soot Sensor) were gasoline and methanol followed by ethanol. The two alcohols tested emitted nucleation mode particles only, whereas gasoline emitted accumulation mode particles as well.
Journal Article

Evaluation of Different Turbocharger Configurations for a Heavy-Duty Partially Premixed Combustion Engine

2017-09-04
2017-24-0164
The engine concept partially premixed combustion (PPC) has proved higher gross indicated efficiency compared to conventional diesel combustion engines. The relatively simple implementation of the concept is an advantage, however, high gas exchange losses has made its use challenging in multi-cylinder heavy duty engines. With high rates of exhaust gas recirculation (EGR) to dilute the charge and hence limit the combustion rate, the resulting exhaust temperatures are low. The selected boost system must therefore be efficient which could lead to large, complex and costly solutions. In the presented work experiments and modelling were combined to evaluate different turbocharger configurations for the PPC concept. Experiments were performed on a multi-cylinder engine. The engine was modified to incorporate long route EGR and a single-stage turbocharger, however, with compressed air from the building being optionally supplied to the compressor.
Journal Article

Transition from HCCI to PPC: Investigation of Fuel Distribution by Planar Laser Induced Fluorescence (PLIF)

2017-03-28
2017-01-0748
In a previous study, in order to investigate the effect of charge stratification on combustion behavior such as combustion efficiency and combustion phasing which also largely affects the emissions, an experiment was conducted in a heavy-duty compression ignition (CI) metal engine. The engine behavior and emission characteristics were studied in the transition from HCCI mode to PPC mode by varying the start of injection (SOI) timing. To gain more detailed information of the mixing process, in-cylinder laser diagnostic measurements, namely fuel-tracer planar laser induced fluorescence (PLIF) imaging, were conducted in an optical version of the heavy-duty CI engine mentioned above. To the authors’ best knowledge, this is the first time to perform fuel-tracer PLIF measurements in an optical engine with a close to production bowl in piston combustion chamber, under transition conditions from HCCI to PPC mode.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
X