Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Compositional Representative Fuel Model for Biofuels - Application to Diesel Engine Modelling

2010-10-25
2010-01-2183
The adequacy of the fuels with the engines has been often a major goal for the oil industry or car manufacturers. As the formulation of fuels becomes more complex, the use of numerical simulation provides an efficient way to understand and analyze the combustion process. These conclusions become increasingly true with the appearance of second generation biofuels. This paper describes a methodology for the representation of fuels and biofuels using a lumping procedure combined with adequate thermodynamic and thermophysical models. This procedure allows computing different thermodynamic and thermophysical properties for simulation purposes in internal combustion engines. The lumping approach involves reducing analytical data to a few pseudo-components characterized by their molecular weight, critical properties and acentric factor.
Technical Paper

LES Calculations of a Four Cylinder Engine

2011-04-12
2011-01-0832
A full 3D Large Eddy Simulation (LES) of a four-stroke, four-cylinder engine, performed with the AVBP-LES code, is presented in this paper. The drive for substantial CO₂ reductions in gasoline engines in the light of the global energy crisis and environmental awareness has increased research into gasoline engines and increased fuel efficiencies. Precise prediction of aerodynamics, mixing, combustion and pollutant formation are required so that CFD may actively contribute to the improvement/optimization of combustion chamber, intake/exhaust ducts and manifold shapes and volumes which all contribute to the global performance and efficiency of an engine. One way to improve engine efficiency is to reduce the cycle-to-cycle variability, through an improved understanding of their sources and effects. The conventional RANS approach does not allow addressing non-cyclic phenomena as it aims to compute the average cycle.
X