Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Dynamic Analysis of Car Ingress/Egress Movement: an Experimental Protocol and Preliminary Results

2009-06-09
2009-01-2309
This paper focuses on full body dynamical analysis of car ingress/egress motion. It aims at proposing an experimental protocol adapted for analysing joint loads using inverse dynamics. Two preliminary studies were first performed in order to 1/ define the main driver/car interactions so as to allow measuring the contact forces at all possible contact zones and 2/ identify the design parameters that mainly influence the discomfort. In order to verify the feasibility of the protocol, a laboratory study was carried out, during which two subjects tested two car configurations. The experimental equipment was composed of a variable car mock-up, an optoelectronic motion tracking system, two 6D-force plates installed on the ground next to the doorframe and on the car floor, a 6D-Force sensor between the steering wheel and the steering column, and two pressure maps on the seat. Motions were reconstructed from measured surface markers trajectories using inverse kinematics.
Journal Article

Inverse Dynamic Reconstruction of Truck Cabin Ingress/Egress Motions

2009-06-09
2009-01-2286
This paper investigates the feasibility of calculating joint forces and moments during a whole body truck cabin ingress/egress motion. For such a task, it is difficult to evaluate a future truck instep as the influences of the architecture parameters are complex over the motion and the discomfort feeling. In order to evaluate the future product at an early stage of the design process, Digital Human Models (DHMs) are interesting tools. However, most existing DHM simulation packages can only efficiently evaluate the kinematics of postures where the dynamics of the whole motion is necessary for such a task. The enhancement of DHMs towards a dynamic analysis and modeling is therefore necessary. In this study, the motions of subjects entering and exiting an adjustable truck cabin were measured by mean of an opto-electronic motion capture system and six load sensors. The joint angles were then calculated using an inverse kinematics method.
X