Refine Your Search

Topic

Author

Search Results

Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Technical Paper

New Concept PFI-Atomizer Fueling System in a Small Single Cylinder SI Engine

2020-09-15
2020-01-2233
This paper presents results from tests using a fuel injection system which uses an ultrasonic atomizer paired with a port fuel injector (PFI). This concept was tested on a four stroke 200 cc spark-ignited two-wheeler engine. A throttle body with a PFI mounted on it was added to the air intake path of the engine, replacing the conventional carburetor. The ultrasonic disc was mounted in such a way, that the injected fuel from the PFI, falls directly on the face of the disc. The atomizer and the PFI were timed and synchronized appropriately using an Arduino® microcontroller, to promote atomization and vaporization of the fuel injected. The atomizer disc was excited using a high frequency oscillator circuit. The engine could be tested at various speeds and loads, corresponding to points which lie on the local drive duty cycle. The engine test results showed improvement in the engine exhaust emissions.
Technical Paper

A Holistic Approach to Develop a Common Rail Single Cylinder Diesel Engine for Bharat Stage VI Emission Legislation

2020-04-14
2020-01-1357
The upcoming Bharat Stage VI (BS VI) emission legislation has put enormous pressure on the future of small diesel engines which are widely used in the Indian market. The present work investigates the emission reduction potential of a common rail direct injection single cylinder diesel engine by adopting a holistic approach of lowering the compression ratio, boosting the intake air and down-speeding the engine. Experimental investigations were conducted across the entire operating map of a mass-production, light-duty diesel engine to examine the benefits of the proposed approach and the results are quantified for the modified Indian drive cycle (MIDC). By reducing the compression ratio from 18:1 to 14:1, the oxides of nitrogen (NOx) and soot emissions are reduced by 40% and 75% respectively. However, a significant penalty in fuel economy, unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are observed with the reduced compression ratio.
Technical Paper

Analysis of In-Cylinder Flow and Cycle-to-Cycle Flow Variations in a Small Spark-Ignition Engine at Different Throttle Openings

2020-04-14
2020-01-0793
Flow variations from one cycle to the next significantly influence the mixture formation and combustion processes in engines. Therefore, it is important to understand the fluid motion and its cycle-to-cycle variations (CCVs) inside the engine cylinder. Researchers have generally investigated the cycle-to-cycle flow variations in moderate- to large-sized engines. In the present work, we have performed the flow measurement and analysis in a small spark-ignition engine. Experiments are conducted in an optically accessible, single-cylinder, port-fuel-injection engine with displacement volume of 110 cm3 at different throttle openings (i.e. 50% and WOT) using particle image velocimetry. Images are captured at different crank angle positions during both intake and compression strokes over a tumble measurement plane, bisecting the intake and exhaust valves and passing through the cylinder axis.
Technical Paper

Experimental Investigation of Combustion Stability and Particle Emission from CNG/Diesel RCCI Engine

2020-04-14
2020-01-0810
This paper presents the experimental investigation of combustion stability and nano-particle emissions from the CNG-diesel RCCI engine. A modified automotive diesel engine is used to operate in RCCI combustion mode. An open ECU is used to control the low and high reactivity fuel injection events. The engine is tested for fixed engine speed and two different engine load conditions. The tests performed for various port-injected CNG masses and diesel injection timings, including single and double diesel injection strategy. Several consecutive engine cycles are recorded using in-cylinder combustion pressure measurement system. Statistical and return map techniques are used to investigate the combustion stability in the CNG-diesel RCCI engine. Differential mobility spectrometer is used for the measurement of particle number concentration and particle-size and number distribution. It is found that advanced diesel injection timing leading to higher cyclic combustion variations.
Technical Paper

Analysis of Combustion Noise in a Small Common-Rail Direct-Injection Diesel Engine at Different Engine Operating Conditions

2020-04-14
2020-01-0419
Stringent emission regulations on one hand and increasing demand for better fuel economy along with lower noise levels on the other hand require adoption of advanced common-rail direct-injection technologies in diesel engines. In the present work, a small 0.9-l, naturally aspirated, two-cylinder, common-rail direct-injection diesel engine is used for the analysis of combustion noise at different engine operating conditions. Experiments are conducted at different loads and engine speeds, incorporating both single and multiple (i.e. pilot and main) injections along with different injection timings. In the case of multiple injections, the influence of pilot injection quantity is also evaluated on the combustion noise while maintaining the same load. In-cylinder pressure was recorded with the resolution of 0.1 crank angle degree, and it was used for the quantitative analysis of noise assessed from the resulting cylinder pressure spectra, and sound pressure level.
Technical Paper

A Computational Study on the Effect of Injector Location on the Performance of a Small Spark-Ignition Engine Modified to Operate under the Direct-Injection Mode

2020-04-14
2020-01-0286
In a direct-injection (DI) engine, charge motion and mixture preparation are among the most important factors deciding the performance and emissions. This work was focused on studying the effect of injector positioning on fuel-air mixture preparation and fuel impingement on in-cylinder surfaces during the homogeneous mode of operation in a naturally aspirated, small bore, 0.2 l, light-duty, air-cooled, four-stroke, spark-ignition engine modified to operate under the DI mode. A commercially available, six-hole, solenoid-operated injector was used. Two injector locations were identified based on the availability of the space on the cylinder head. One location yielded the spray-guided (SG) configuration, with one of the spray plumes targeted towards the spark plug. In the second location, the spray plumes were targeted towards the piston top in a wall-guided (WG) configuration so as to minimize the impingement of fuel on the liner.
Journal Article

Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

2012-04-16
2012-01-1295
Although the urea-SCR technology exhibits high NO reduction efficiency over a wide range of temperatures among the lean NO reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NO reduction performance at low-temperature operating conditions (T ≺ 150°C). We postulate that the poor performance is either due to NH₃ storage inhibition by species like hydrocarbons or due to competitive adsorption between NH₃ and other adsorbates such as H₂O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite-based urea-SCR catalysts based on bench reactor experiments.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Technical Paper

Validation Method for Diesel Particulate Filter Durability

2007-10-29
2007-01-4086
The diesel particulate filter (DPF) is a critical aftertreatment device for control of particulate matter (PM) emissions from a diesel engine. DPF survivability is challenged by several key factors such as: excessive thermal stress due to DPF runaway regenerations (or uncontrolled regeneration) may cause DPF substrate and washcoat failure. Catalyst poisoning elements from the diesel fuel and engine oil may cause performance degradation of the catalyzed DPF. Harsh vibration from the powertrain, as well as from the road surface, may lead to mechanical failure of the substrate and/or the matting material. Evaluations of these important validation parameters were performed.
Technical Paper

Influence of Particle Size of Graphite on Performance Properties of Friction Composites

2007-10-07
2007-01-3967
Non-Asbestos Organic (NAO) brake- material research has been significant in the last decade in an attempt to replace the conventional semi-metallic and asbestos based materials. Influence of ingredients in this multi-ingredient (generally 10-25 in different proportions) system on performance properties, however, is still not thoroughly researched area because of complexity involved and needs intensive efforts to understand this aspect. Graphite is one of the most important and almost inevitable ingredients in friction materials. A wide variety of graphite varying in origin, particle size, crystallinity, thermal conductivity etc. is used by the industry. An in-depth and systematic study on the influence of size of graphite on tribo-performance, however, is not available.
Technical Paper

Comparative Studies on the Idling Performance of a Three Cylinder Passenger Car Engine Fitted with a Carburettor and a Single Point Electronic Gasoline Fuel Injection System

1997-05-01
971615
Experimental investigations relating to the performance and emission characteristics under idling conditions of a three cylinder passenger car spark ignition engine operating on a conventional carburettor and a developed single point gasoline fuel injection system are described in this paper. The idling performance at different engine speeds was studied by carrying out comprehensive engine testing on a test bed in two phases. In the first phase, experiments were conducted on an engine fitted with a conventional carburettor whilst they were extended to the engine provided with a developed electronic single point fuel injection (SPI) system, whose fuel spray was directed against the direction of air flow. The injection timing of the SPI system was varied from 82 deg. before inlet valve opening (or 98 deg. before top dead center) to 42 deg. after inlet valve opening (or 26 deg. after top dead center).
Technical Paper

Studies on Performance and Exhaust Emissions of a CI Engine Operating on Diesel and Diesel Biodiesel Blends at Different Injection Pressures and Injection Timings

2007-04-16
2007-01-0613
The effect of variation in injection pressure and Injection timing on the performance and exhaust emission characteristics of a direct injection, naturally aspirated Diesel engine operating on Diesel and Diesel-Biodiesel Blends were studied. A three-way factorial design consisting of four levels of injection pressure (150,210, 265,320 bar), four levels of injection timing (19° btdc, 21.5° btdc, 26° btdc, and 30.5° btdc) and five different fuel types (D100, B10, B20, B40, and B60) were employed in this test. The experimental analysis shows that when operating with Linseed Oil Methyl Ester-Diesel blends, we could increase the injection pressure by about 25% over the normal value of 20MPa. The engine performance and exhaust emission characteristics of the engine operating on the ester fuels at advanced injection timing were better than when operating at increased injection pressure.
Technical Paper

Durability Performance of Advanced Ceramic Material DPFs

2007-04-16
2007-01-0918
Dow Automotive has developed an ACM DPF substrate, characterized with light-weight, low pressure-drop, rapid regeneration, and excellent chemical resistance at high temperature. An uncatalyzed DPF was tested on a 2.0L common-rail diesel engine for over 100 soot loading and regeneration cycles, which included a combination of controlled regenerations, uncontrolled regenerations and incomplete regenerations. The DPF demonstrated high filtration efficiency and physical integrity throughout the entire test. The ACM DPF has also demonstrated excellent catalyst coating capability and performance. An ACM DPF with a total volume of three-liter and coated with the same catalyst formulation as the original catalyzed DPF, was used to replace the OEM four-liter catalyzed SiC DPF on a 2005 model-year 1.9L European diesel passenger car. It was demonstrated that the ACM DPF has lower pressure drop and faster regeneration than that of the OEM DPF.
Technical Paper

Effects of Manufacturing Processes and In-Service mperature Variations on the Properties of TRIP Steels

2007-04-16
2007-01-0793
This paper examines some key aspects of the manufacturing process that “ Transformation Induced Plasticity” (TRIP) steels would be exposed to, and systematically evaluate how the forming and thermal histories affect final strength and ductility of the material. We evaluate the effects of in-service temperature variations, such as under hood and hot/cold cyclic conditions, to determine whether these conditions influence final strength, ductility and energy absorption characteristics of several available TRIP steel grades. As part of the manufacturing thermal environment evaluations, stamping process thermal histories are included in the studies. As part of the in-service conditions, different pre-straining levels are included. Materials from four steel suppliers are examined. The thermal/straining history versus material property relationship is established over a full range of expected thermal histories and selected loading modes.
Technical Paper

Visualization Techniques for Single Channel DPF Systems

2007-04-16
2007-01-1126
New techniques have been developed to visualize soot deposition in both traditional and new diesel particulate filter (DPF) substrate materials using a modified cyanoacrylate fuming technique. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results. Early results indicate that stabilizing the soot layer using a vaporized adhesive (Cynoacrylate) may allow analysis of the layer with new methods.
Technical Paper

Optimizing the Advanced Ceramic Material for Diesel Particulate Filter Applications

2007-04-16
2007-01-1124
This paper describes the application of pore-scale filtration simulations to the advanced ceramic material (ACM) developed for use in advanced diesel particulate filters. The application required the generation of a three-dimensional substrate geometry to provide the boundary conditions for the flow model. An innovative stochastic modeling technique was applied matching chord length distribution and the porosity profile of the material. Additional experimental validation was provided by the single-channel experimental apparatus. Results show that the stochastic reconstruction techniques provide flexibility and appropriate accuracy for the modeling efforts. Early investigation efforts imply that needle length may provide a mechanism for adjusting performance of the ACM for diesel particulate filter (DPF) applications. New techniques have been developed to visualize soot deposition in both traditional and new DPF substrate materials.
Technical Paper

Diesel NOx Reduction on Surfaces in Plasma

1998-10-19
982511
Recent work has shown that energy efficiencies as well as yields and selectivities of the NOx reduction reaction can be enhanced by combining a plasma discharge with select catalysts. While analysis of gas phase species with a chemiluminescent NOx meter and mass spectrometer show that significant removal of NOx is achieved, high background concentrations of nitrogen preclude the measurement of nitrogen produced from NOx reduction. Results presented in this paper show that N2 from NOx reduction can be measured if background N2 is replaced with helium. Nitrogen production results are presented for a catalyst system where the catalyst is in the plasma region and where the catalyst is downstream from the plasma. The amount of N2 produced is compared with the amount of NOx removed as measured by the chemiluminescent NOx meter. The measured nitrogen from NOx reduction accounts for at least 40% of the total NOx removed for both reactor configurations.
Technical Paper

Experimental Evaluation of Mahua based Biodiesel as Supplementary Diesel Fuel

2009-04-20
2009-01-0479
Biodiesel developed from non- edible seeds grown in the wasteland in India can be very effectively utilized in the existing diesel engines used for various applications. This paper presents the results of investigations carried out in studying the fuel properties of mahua oil methyl ester (MOME) and its blend with diesel from 20% to 80% by volume. These properties were found to be comparable to diesel and confirming to both the American and Indian standards. The performance of mahua biodiesel (MOME) and its blend with diesel in a Kirloskar DAF8 engine has been observed. The addition of MOME to diesel fuel has significantly reduced CO, UBHC and smoke emissions but increases the NOx emission slightly. The reductions in exhaust emissions could help in controlling air pollution. The results show that no significant power reduction in the engine operation when operated with blends of MOME and diesel fuel.
X