Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

HEV Architectures - Power Electronics Optimization through Collaboration Sub-topic: Inverter Design and Collaboration

2010-10-19
2010-01-2309
As the automotive industry quickly moves towards hybridized and electrified vehicles, the optimal integration of power electronics in these vehicles will have a significant impact not only on the cost, performance, reliability, and durability; but ultimately on customer acceptance and market success of these technologies. If properly executed with the right cost, performance, reliability and durability, then both the industry and the consumer will benefit. It is because of these interdependencies that the pace and scale of success, will hinge on effective collaboration. This collaboration will be built around the convergence of automotive and industrial technology. Where real time embedded controls mixes with high power and voltage levels. The industry has already seen several successful collaborations adapting power electronics to the automotive space in target vehicles.
Technical Paper

Multicore vs Safety

2010-04-12
2010-01-0207
It is the beginning of a new age: multicore technology from the PC desktop market is now also hitting the automotive domain after several years of maturation. New microcontrollers with two or more main processing cores have been announced to provide the next step change in available computing power while keeping costs and power consumption at a reasonable level. These new multicore devices should not be confused with the specialized safety microcontrollers using two redundant cores to detect possible hardware failures which are already available. Nor should they be confused with the heterogeneous multicore solutions employing an additional support core to offload a single main processing core from real-time tasks (e.g. handling peripherals).
Technical Paper

Semiconductor Solutions for Braking Systems: New Partitioning and New Safety Concepts Increase Safety and Reduce System Cost

2004-03-08
2004-01-0251
Braking systems require a high system safety level: New safety concepts need to be implemented by reducing the system complexity. Microcontrollers with special safety functions are available with implemented features, self detecting and compensating different types of faults. Today usually two microcontrollers are used to check each other. Power devices provide microcontroller supplies and drive motors and valves; internally the functions are supervised to avoid incorrect system behaviour due to wrong voltages, currents, missing loads or other malfunctions. Bus interfaces, signal conditioning and interfaces for high voltage signals are integrated into the power system ICs. Latest BIPOLAR-CMOS-DMOS power technologies enable the power semiconductors to integrate logic functions.
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
Technical Paper

Demonstration of Automotive Steering Column Lock using Multicore AutoSAR® Operating System

2012-04-16
2012-01-0031
The migration of many vehicle security features from mechanical solutions (lock and key) to electronic-based systems (transponder and RF transceiver) has led to the need for purely electrically operated locking mechanisms. One such example is a steering column lock, which locks and unlocks the steering wheel movement via a reversible electric motor. The safety case for this system (in respect to ISO26262) is highly complex, as there is no single safe state of the steering column lock hardware because there is a wider system-level interlock required. The employed control platform uses ASIL D capable multicore microcontroller hardware, together with the first implementation of AutoSAR® version 4.0 operating system to demonstrate a real-world usage of the newly specified encapsulation and monitoring mechanisms using the multicore extensions of AutoSAR and those of PharOS.
Technical Paper

High Performance Code Generation for Audo, an Automotive μController from Infineon Technologies

2000-03-06
2000-01-0393
The demands of the automotive market are decreasing the time-to-market required from the initial concept of new control systems to their implementation. The goal of automotive companies is to constantly reduce the development time to reap the full economic and strategic benefits of being quicker to market. The target is to reach a development time of less than 12 months for some applications. At the same time, the complexity of these new systems is growing almost exponentially. While new techniques like model-based control design with executable specifications, rapid control prototyping and hardware-in-the-loop simulation have helped significantly streamline the development process, the new strategies are still being transferred to the production target by hand. During an early project phase, automotive customers also need to explore different silicon architectures provided by semiconductor manufacturers to select the vendors who can offer the best solution at the lowest price.
Technical Paper

Real-Time 32-Bit Microcontroller with OSEK/VDX Operating System Support

2000-03-06
2000-01-1243
This paper describes the first single-core 32-bit microcontroller-DSP architecture, TriCore, optimized for real-time embedded systems, an OSEK/VDX Real-Time Operating System (RTOS) and an open, integrated development tools platform to allow a development downflow for high-level Computer Aided Software Engineering (CASE) design entry and simulation/validation, rapid prototyping down to the target hardware for calibration and debugging and the up-flow by feeding the data collected from the target Electronic Control Unit (ECU) for system analysis and debugging all the way back to the entry CASE level. Also described are the different features of the new 32-Bit microcontroller-DSP, which speeds up the execution of embedded control applications and simultaneously reduce memory demand.
X