Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Mechanical Testing - Still Necessary!

2007-04-16
2007-01-1768
Over the last decades, the use of computers has become an integral part of the engine development process. Computer-based tools are increasingly used in the design process, and especially the layout of the various subsystems is conducted by means of simulation models. Computer-aided engineering plays a central role e.g. in the design of the combustion process as well as with regards to work performed in the area of engine mechanics, where CFD, FEM, and MBS are applied. As a parallel trend, it can be observed that various engine performance characteristics such as e.g. the specific power output and the power-to-weight ratio have undergone an enormous increase, a trend which to some extent counteracts the increase in safety against malfunction and failure. As yet, due to the constant need for further optimization, mechanical testing and verification processes have not become redundant, and it is assumed that they will remain indispensable for the foreseeable future.
Technical Paper

Borderline Design of Crankshafts Based on Hybrid Simulation Technology

2009-06-15
2009-01-1918
This paper introduces different modeling approaches of crankshafts, compares the refinement levels and discusses the difference between the results of the crankshaft durability calculation methodologies. A V6 crankshaft is considered for the comparison of the refinement levels depending on the deviation between the signals such as main bearing forces and deflection angle. Although a good correlation is observed between the results in low speed range, the deviation is evident through the mid to high speed ranges. The deviation amplitude differs depending on the signal being observed and model being used. An inline 4 crankshaft is considered for the comparison of the durability results. The analysis results show that the durability potential is underestimated with a classical crankshaft calculation approach which leads to a limitation of maximum speed of 5500 rpm.
Technical Paper

Modern Gear Train Simulation Process for the Virtual Engine and Transmission Development

2006-04-03
2006-01-0585
Current simulation tools for the investigation of the dynamic system response as well as for the component stresses on the basis of multi-body and finite-element techniques are integral part of today's powertrain development efforts. These tools are typical used for the analysis and optimization of shafts, clutches, chain/belt drives, bearings, levers, brackets, housings and many other components. An exception is made by gears which today are still frequently investigated by the help of semi-empirical methods based on DIN, ISO, AGMA and the specific knowledge base of well experienced developers. The main difficulty is that the gears are rolling off via large contact surfaces with complex nonlinear mechanical contact properties. Within the scope of research work FEV developed a new method for the analysis and optimization of gear drives based on comercial multi-body and finite-element software platforms.
X