Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Journal Article

Determination of the Cylinder Head Valve Bridge Temperatures in the Concept Phase Using a Novel 1D Calculation Approach

2010-04-12
2010-01-0499
The steady increase of engine power and the demand of lightweight design along with enhanced reliability require an optimized dimensioning process, especially in cylinder head valve bridge, which is progressively prone to cracking. The problems leading to valve bridge cracking are high temperatures and temperature gradients on one hand and high mechanical restraining on the other hand. The accurate temperature estimation at the valve bridge center has significant outcomes for valve bridge thickness and width optimization. This paper presents a 1D heat transfer model, which is constructed through the cross section of the valve bridge center by the use of well known quasi-stationary heat convection and conduction equations and reduced from 3D to 1D via regression and empirical weighting coefficients. Several diesel engine cylinder heads with different application types and materials are used for model setup and verification.
Journal Article

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-04-16
2012-01-1343
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles “with and without” the technologies being evaluated.
Journal Article

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

2013-09-08
2013-24-0059
In order to thoroughly investigate and improve the path from biofuel production to combustion, the Cluster of Excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Since then, a variety of fuel candidates have been investigated. In particular, 2-methyl tetrahydrofurane (2-MTHF) has shown excellent performance w.r.t. the particulate (PM) / NOx trade-off [1]. Unfortunately, the long ignition delay results in increased HC-, CO- and noise emissions. To overcome this problem, the addition of di-n-butylether (DNBE, CN ∼ 100) to 2-MTHF was analyzed. By blending these two in different volumetric shares, the effects of the different mixture formation and combustion characteristics, especially on the HC-, CO- and noise emissions, have been carefully analyzed. In addition, the overall emission performance has been compared to EN590 diesel.
Technical Paper

Application of Combustion Sound Level (CSL) Analysis for Powertrain

2009-05-19
2009-01-2168
Powertrain noise is a significant factor in determination of the overall vehicle refinement expected by today's discriminating automotive customer. Development of a powertrain to meet these expectations requires a thorough understanding of the contributing noise sources. Specifically, combustion noise greatly impacts the perception of sound levels and quality. The relevance of combustion noise development has increased with the advent of newer efficiency-driven technologies such as direct injection or homogeneous charge compression ignition. This paper discusses the application of a CSL (Combustion Sound Level) analysis-a method for the identification and optimization of combustion noise. Using CSL, it is possible to separate mechanical and combustion noise sources.
Technical Paper

SOLID SCR®: Demonstrating an Improved Approach to NOx Reduction via a Solid Reductant

2011-09-13
2011-01-2207
Stringent global emissions legislation demands effective NOx reduction strategies, particularly for the aftertreatment, and current typical liquid urea SCR systems achieve efficiencies greater than 90% [1]. However, with such high-performing systems comes the trade-off of requiring a tank of reductant (urea water solution) to be filled regularly, usually as soon as the fuel fillings or as far as oil changes. Advantages of solid reductants, particularly ammonium carbamate, include greater ammonia densities, enabling the reductant refill interval to be extended several multiples versus a given reductant volume of urea, or diesel exhaust fluid (DEF) [2]. An additional advantage is direct gaseous ammonia dosing, enabling reductant injection at lower exhaust temperatures to widen its operational coverage achieving greater emissions reduction potential [3], as well as eliminating deposits, reducing mixing lengths, and avoiding freeze/thaw risks and investments.
Technical Paper

Investigation Regarding the Influence of a Catalytic Combustion Chamber Coating on Gasoline Combustion Characteristics, Emission Formation and Engine Efficiency

2012-04-16
2012-01-1097
Over the past few years, both global warming and rising oil prices led to a significantly increased demand for low fuel consumption in passenger cars. However, the necessity to also meet the limits of today's and future emission regulations makes it more and more difficult to maintain a high engine efficiency without the use of an expensive external exhaust gas after-treatment system. Therefore, new technologies that simultaneously prevent emission formation and reduce fuel consumption inside the internal combustion engine during the combustion process itself are of highest interest. This paper analyzes the influence of a catalytic coating of the combustion chamber on combustion, emission formation and fuel consumption. For this purpose, test runs with a production 2.0-liter, 4-cylinder, 4-valve, double overhead camshaft (DOHC), port fuel injection (PFI) gasoline engine were performed.
Technical Paper

Optical Investigation of Biofuel Effects on NO and PAH Formation in Diesel-Like Jets

2015-09-06
2015-24-2485
In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this reason in this paper a blend out of 1-octanol and di-n-butylether and pure di-n-butylether are investigated in comparison to n-heptane as diesel-like fuel. The alternative fuels have a different combustion behavior particularly concerning important combustion parameters like ignition delay and mixture formation. Especially the formation of pollutants like nitrogen oxides in the combustion of alternative fuels is of global interest. The knowledge of the combustion behavior is important to design new engine geometries or implement a new calibration of the engine. In previous measurements in a single cylinder engine it was found out that both alternative fuels form nearly no soot emissions. For this reason now NOx is investigated optically to avoid the traditional soot NOx trade-off in diesel combustion.
Technical Paper

C8-Oxygenates for Clean Diesel Combustion

2014-04-01
2014-01-1253
Within this paper, the two possible alternative and biomass-based fuel candidates Di-n-butyl ether (DNBE) and 1-octanol are investigated with regard to their utilization in a diesel-type engine. In order to asses the fuels emission-reduction potential, both have been tested in a single cylinder engine (SCE) and a high pressure chamber (HPC) in comparison to conventional EN590 diesel at various load points. Due to its reduced reactivity 1-octanol features a longer ignition delay and thus higher degrees of homogenization at start of combustion, whereas DNBE ignites rather rapidly in both the HPC and the engine leading to a predominantly mixing controlled combustion. Thus, both fuels feature completely different combustion characteristics. However, compared to diesel, both fuels contribute to a significant reduction in Filter Smoke Number (FSN) up to a factor of 15.
Technical Paper

Advanced RF Particulate Filter Sensing and Controls for Efficient Aftertreatment Management and Reduced Fuel Consumption

2015-04-14
2015-01-0996
Although designed for the purpose of reducing engine-out Particulate Matter (PM) emissions to meet or exceed mandated emissions regulations, the particulate filter also incurs a fuel economy penalty. This fuel penalty is due to the increased exhaust flow restriction attributed to the PM accumulated in the filter, in addition to fuel consumed for active regeneration. Unlike the soot which may be oxidized through the regeneration process, incombustible material or ash continues to build-up in the filter following each regeneration event. Currently pressure- and model-based controls are used to provide an indirect estimate of the loading state of the particulate filter, in order to manage the filter operation and determine when to regenerate the filter. The challenges associated with pressure- and model-based particulate filter control over real-world operating conditions are well-known.
X