Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Fuel Economy Benefits for Commercial Diesel Engines with Waste Heat Recovery

2015-09-29
2015-01-2807
In the near future engine emitted carbon dioxides (CO2) are going to be limited for all vehicle categories with respect to the Green House Gases (GHG) norms. To tackle this challenge, new concepts need to be developed. For this reason waste heat recovery (WHR) is a promising research field. For commercial vehicles the first phase of CO2 emission legislation will be introduced in the USA in 2014 and will be further tightened towards 2030. Besides the US, CO2 emission legislation for commercial engines will also be introduced in Europe in the near future. The demanded CO2 reduction calls for a better fuel economy which is also of interest for the end user, specifically for the owners of heavy duty diesel vehicles with high mileages. To meet these future legislation objectives, a waste heat recovery system is a beneficial solution of recovering wasted energies from different heat sources in the engine.
Journal Article

Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission

2013-04-08
2013-01-0267
Demand for transport energy is growing but this growth is skewed heavily toward commercial transport, such as, heavy road, aviation, marine and rail which uses heavier fuels like diesel and kerosene. This is likely to lead to an abundance and easy availability of lighter fractions like naphtha, which is the product of the initial distillation of crude oil. Naphtha will also require lower energy to produce and hence will have a lower CO₂ impact compared to diesel or gasoline. It would be desirable to develop engine combustion systems that could run on naphtha. Many recent studies have shown that running compression ignition engines on very low Cetane fuels, which are very similar to naphtha in their auto-ignition behavior, offers the prospect of developing very efficient, clean, simple and cheap engine combustion systems. Significant development work would be required before such systems could power practical vehicles.
Journal Article

Crude Tall Oil-Based Renewable Diesel as a Blending Component in Passenger Car Diesel Engines

2013-10-14
2013-01-2685
The residue and waste streams of existing industry offer feasible and sustainable raw materials for biofuel production. All kind of biomass contains carbon and hydrogen which can be turned into liquid form with suitable processes. Using hydrotreatment or Biomass-to-Liquid technologies (BTL) the liquid oil can be further converted into transportation biofuels. Hydrotreatment technology can be used to convert bio-oils and fats in to high quality diesel fuels that have superior fuel properties (e.g. low aromatic content and high cetane number) compared to regular diesel fuel and first generation ester-type diesel fuel. UPM has developed a new innovative technology based on hydrotreatment that can be used to convert Crude Tall Oil (CTO) into high quality renewable diesel fuel. This study concentrated on determining the functionality and possible effects of CTO based renewable diesel as a blending component on engine emissions and engine performance.
Technical Paper

Balancing of Engine Oil Components in a DI Diesel Engine with Exhaust Gas Aftertreatment

2007-07-23
2007-01-1923
The influence of oil related emissions became more important in the past due to reduced engine-out emissions of combustion engines. Additionally the efficiency of exhaust gas after treatment components is influenced by oil derived components. A balancing of relevant engine oil components (Ca, Mg, Zn, P, S, Mo, B, Fe, Al, Cu) is presented in this paper. The oil components deposited in the combustion chamber, in the exhaust system as well as in the aftertreatment devices were determined and quantified. Therefore a completely cleaned DI Diesel engine with oxidation catalyst, Diesel particulate filter (DPF) and NOx adsorber catalyst (LNT) was operated in different operating conditions for 500 h in a development test cell. The operation included lean/rich cycling for NOx trap regeneration. After finishing the 500 h test procedure the engine was completely disassembled and all deposits were analyzed.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Weight and Friction Optimized Cranktrain Design Supported by Coupled CAE Tools

2009-04-20
2009-01-1452
Due to the contradiction of the market demands and legal issues OEMs are forced to invest in finding concepts that assure high fuel economy, low exhaust emissions and high specific power at the same time. Since mechanical losses may amount up to 10 % of the fuel energy, a key to realise such customer/government specific demands is the improvement of the mechanical performance of the engines, which comprises mainly friction decrease and lightweight design of the engine parts. In order to achieve the mentioned objectives, it has to be checked carefully for each component whether the design potentials are utilized. Many experimental studies show that there is still room for optimization of the cranktrain parts, especially for the crankshaft. A total exploitation of the crankshaft potentials is only possible with advanced calculation approaches that ensure the component layout within design limits.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Analysis of the Effects of Certain Alcohol and Furan-Based Biofuels on Controlled Auto Ignition

2012-04-16
2012-01-1135
For gasoline engines controlled autoignition provides the vision of enabling the fuel consumption benefit of stratified lean combustion systems without the drawback of additional NOx aftertreatment. In this study the potential of certain biofuels on this combustion system was assessed by single-cylinder engine investigations using the exhaust strategy "combustion chamber recirculation" (CCR). For the engine testing sweeps in the internal EGR rate with different injection strategies as well as load sweeps were performed. Of particular interest was to reveal fuel differences in the achievable maximal load as well as in the NOx emission behavior. Additionally, experiments with a shock tube and a rapid compression machine were conducted in order to determine the ignition delay times of the tested biofuels concerning controlled autoignition-relevant conditions.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Optimization of Diesel Combustion and Emissions with Newly Derived Biogenic Alcohols

2013-10-14
2013-01-2690
Modern biofuels offer the potential to decrease engine out emissions while at the same time contributing to a reduction of greenhouse gases produced from individual mobility. In order to deeply investigate and improve the complete path from biofuel production to combustion, in 2007 the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University. Since then, a whole variety of possible fuel candidates have been identified and investigated. In particular oxygenated fuels (e.g. alcohols, furans) have proven to be beneficial regarding the particulate matter (PM)/ NOx trade-off [1, 2, 3] in diesel-type combustion. Alcohols that provide a longer ignition delay than diesel might behave even better with regard to this trade-off due to higher homogenization of the mixture. Recent studies carried out within the Cluster of Excellence have discovered new pathways to derive 1-octanol from biomass [4], which features a derived cetane number (DCN) of 39.
Technical Paper

Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the Exhaust Gas Emissions of Compression Ignition Engines

2013-10-07
2013-36-0571
In order to deeply investigate and improve the complete path from biofuel production to combustion, the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Recently, new pathways have been discovered to synthesize octanol [1] and di-n-butylether (DNBE). These molecules are identical in the number of included hydrogen, oxygen and carbon atoms, but differ in the molecular structure: for octanol, the oxygen atom is at the end of the molecule, whereas for DNBE it is located in the middle. In this paper the utilization of octanol and DNBE in a state-of-the-art single cylinder diesel research engine will be discussed. The major interest has been on engine emissions (NOx, PM, HC, CO, noise) compared to conventional diesel fuel.
Technical Paper

Experimental Proof-of-Concept of HiL Based Virtual Calibration for a Gasoline Engine with a Three-Way-Catalyst

2019-12-19
2019-01-2301
The increasing complexity of modern combustion engines together with the substantial variability of hybrid electric powertrains, lead to new challenges in function development, system integration and vehicle calibration processes. Hardware-in-the-Loop (HiL) simulations have been introduced to front-load part of the testing and calibration tasks from the vehicle to a virtual environment. With this approach, the simulation quality and the cost-benefit ratio are strongly dependent on the accuracy of the plant modelling and the computational effort. This paper introduces a novel HiL simulation platform for an engine control unit (ECU) with a crank-angle resolved real-time model (GT-Power) for a gasoline engine with direct fuel injection, single stage turbocharging and a three-way catalyst. By simplifying the fluid dynamics simulation model from the concept phase, a good compromise between model accuracy and computation speed can be achieved with relatively low effort.
X