Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Compact Post-Aftertreatment Temperature Control Device for Exhaust Gas Cooling

2007-10-30
2007-01-4199
This paper presents a compact temperature control device to cool down hot exhaust gas coming out of an aftertreatment emission control system. Active DPF (Diesel Particulate Filter) regeneration is required for aftertreatment emission controls to meet the 2007 EPA (Environmental Protection Agency) PM(Particulate Matter) standard. However, regeneration of the DPF temporarily elevates temperatures in the filter to eliminate accumulated soot. This can increase the temperature of the exhaust gas. The temperature control device in this paper draws ambient air into the hot exhaust stream and mixes them together in such a fashion to maximize temperature drop and minimize back pressure for a limited space without any moving parts or supply of extra power. The simple and compact design of the device makes it a cost-effective candidate to retrofit to an existing aftertreatment system.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

2015-09-29
2015-01-2808
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
X