Refine Your Search

Topic

Search Results

Journal Article

The Evaluation of a New Kinematic Emissions Model on Real and Simulated Driving Cycles

2010-05-05
2010-01-1564
The evaluation of vehicles real emissions circulating in urban areas is a basic activity for planning and management of implemented traffic measures aiming at emission control and air quality improvement. National, region, and city emission inventories require overall average emission estimation based on modeling technique with a few input parameters such as fleet composition and mission profile, represented by average speed. But in the field of emission modeling an important open issue is the very expensive costs of experimental campaigns needed to obtain driving cycle statistically representative of driving behavior, also if only in a specific link of a network. A possible approach to deal with this problem is represented by the use of traffic microscopic simulation models which are capable to simulate individual car motion on the basis of traffic conditions, road characteristics and management rules.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

A 3D CFD Simulation of GDI Sprays Accounting for Heat Transfer Effects on Wallfilm Formation

2017-09-04
2017-24-0041
During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account.
Technical Paper

Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach

2020-04-14
2020-01-0325
In the last years, increasing concerns about environmental pollution and fossil sources depletion led transport sectors research and development towards the study of new technologies capable to reduce vehicles emissions and fuel consumption. Direct-injection systems (DI) for internal combustion engines propose as an effective way to achieve these goals. This technology has already been adopted in Gasoline Direct Injection (GDI) engines and, lately, a great interest is growing for its use in natural gas fueling, so increasing efficiency with respect to port-fuel injection ones. Alone or in combination with other fuels, compressed natural gas (CNG) represents an attractive way to reduce exhaust emission (high H/C ratio), can be produced in renewable ways, and is more widespread and cheaper than gasoline or diesel fuels. Gas direct-injection process involves the occurrence of under-expanded jets in the combustion chamber.
Technical Paper

Effects of Ultra-High Injection Pressures up to 100 MPa on Gasoline Spray Morphology

2020-04-14
2020-01-0320
Very high pressures for injecting gasoline in internal combustion (i.c.) engines are recently explored for improving the air/fuel mixing process in order to control unburned hydrocarbons (UBHC) and particulate matter emissions such as for investigating new combustion concepts. The challenge remains the improvement of the spray parameters in terms of atomization, smaller droplets and their spread in the combustion chamber in order to enhance the combustion efficiency. In this framework, the raise of the injection pressure plays a key role in GDI engines for the trade-off of CO2 vs other pollutant emissions. This study aims contributing to the knowledge of the physical phenomena and mechanisms occurring when fuel is injected at ultra-high pressures for mapping and controlling the mixture formation.
Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Journal Article

Real Time Emissive Behaviour of a Bi-Fuel Euro 4 SI Car in Naples Urban Area

2013-09-08
2013-24-0173
An experimental campaign was carried out to evaluate the influence of CNG and gasoline on the exhaust emissions and fuel consumption of a bi-fuel passenger car over on-road tests performed in the city of Naples. The chosen route is very traffic congested during the daytime of experimental measurements. An on-board analyzer was used to measure CO, CO2, NOx tailpipe concentrations and the exhaust flow rate. Throughout a carbon balance on the exhaust pollutants, the fuel consumption was estimated. The exact spatial position was acquired by a GPS which allowed to calculate vehicle speed and the traffic condition was monitored by a video camera. Whole trip realized by the vehicle was subdivided in succession of kinematic sequences and the vehicle emissions and fuel consumption were analyzed and presented as value on each kinematic sequence. Moreover, throughout a multivariate statistical analysis of sequences, the driving cycles characterizing the use of vehicle were identified.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Technical Paper

Experimental and Numerical Investigation of High-Pressure Diesel Sprays with Multiple Injections at Engine Conditions

2010-04-12
2010-01-0179
A numerical methodology to simulate the high pressure spray evolution and the fuel-air mixing in diesel engines is presented. Attention is focused on the employed atomization model, a modified version of the Huh and Gosman, on the definition of a turbulence length scale limiter and of an adaptive local mesh refinement technique to minimize the result grid dependency. All the discussed models were implemented into Lib-ICE, which is a set of libraries and solvers, specifically tailored for engine simulations, which runs under the open-source CFD technology OpenFOAM®. To provide a comprehensive assessment of the proposed methodology, the validation procedure consisted into simulating, with a unique and coherent setup of all models, two different sets of experiments: a non-evaporating diesel fuel spray in a constant-volume vessel with optical access and an evaporating non-reacting diesel fuel spray in an optical engine.
Technical Paper

Vapor and Liquid Phases of the ECN Spray G Impacting on a Flat Wall at Engine-Like Conditions

2016-10-17
2016-01-2199
Mixture formation is fundamental for the development of the combustion process in internal combustion engines, for the energy release, the consumption, and the pollutant formation. Concerning the spark ignition engines, the direct injection technology is being considered as an effective mean to achieve the optimal air-to-fuel ratio distribution at each operating condition, either through charge stratification around the spark plug and stoichiometric mixture under the high power requirements. Due to the highest injection pressures, the impact of a spray on the piston or on the cylinder walls causes the formation of liquid film (wall-film) and secondary atomization of the droplets. The wall-film could have no negligible size, especially where the mixture formation is realized under a wall-guided mode. The present work aims to report the effects of the ambient pressure and wall temperature on the macroscopic parameters of the spray impact on a wall.
Technical Paper

Impinging Jets of Fuel on a Heated Surface: Effects of Wall Temperature and Injection Conditions

2016-04-05
2016-01-0863
In spark ignition engines, the nozzle design, fuel pressure, injection timing, and interaction with the cylinder/piston walls govern the evolution of the fuel spray inside the cylinder before the start of combustion. The fuel droplets, hitting the surface, may rebound or stick forming a film on the wall, or evaporate under the heat exchange effect. The face wetting results in a strong impact on the mixture formation and emission, in particular, on particulate and unburned hydrocarbons. This paper aims to report the effects of the injection pressure and wall temperature on the macroscopic behavior, atomization, and vaporization of impinging sprays on the metal surface. A mono-component fuel, iso-octane, was adopted in the spray-wall studies inside an optically-accessible quiescent vessel by imaging procedures using a Z-shaped schlieren-Mie scattering set-up in combination with a high-speed C-Mos camera.
Technical Paper

Iso-Octane Spray from a GDI Multi-Hole Injector under Non- and Flash Boiling Conditions

2017-10-08
2017-01-2319
GDI injection systems have become dominant in passenger cars due to their flexibility in managing and advantages in the fuel economy. With the increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the fuel spray behavior has become essential. Different engine loads produce in a variety of fuel supplying conditions that affect the air/fuel mixture preparation and influence the efficiency and pollutant production. The flash boiling is a particular state that occurs for peculiar thermodynamic conditions of the engine. It could strongly influence the mixture in sub-atmospheric environments with detrimental effects on emissions. In order to obtain an in-depth understanding of the flash boiling phenomena, it is necessary to study the parameters influencing the mixture formation and their appearance in diverse engine conditions.
Technical Paper

Combined Experimental and Numerical Investigation of the ECN Spray G under Different Engine-Like Conditions

2018-04-03
2018-01-0281
A detailed understanding of Gasoline Direct Injection (GDI) techniques applied to spark-ignition (SI) engines is necessary as they allow for many technical advantages such as increased power output, higher fuel efficiency and better cold start performances. Within this context, the extensive validation of multi-dimensional models against experimental data is a fundamental task in order to achieve an accurate reproduction of the physical phenomena characterizing the injected fuel spray. In this work, simulations of different Engine Combustion Network (ECN) Spray G conditions were performed with the Lib-ICE code, which is based on the open source OpenFOAM technology, by using a RANS Eulerian-Lagrangian approach to model the ambient gas-fuel spray interaction.
Technical Paper

Experimental and Numerical Characterization of Gasoline-Ethanol Blends from a GDI Multi-Hole Injector by Means of Multi-Component Approach

2013-09-08
2013-24-0002
This paper reports an experimental and numerical investigation of the spray structure development for pure gasoline fuel and two different ethanol-gasoline blends (10% and 85% ethanol). A numerical methodology has been developed to improve the prediction of the pure and blends fuel spray. The fuel sprays have been simulated by means of a 3D-CFD code, adopting a multi-component approach for the fuel simulations. The vaporization behavior of the real fuel has been improved testing blends of 7 hydrocarbons and a reduced multi-component model has been defined in order to reduce the computational cost of the CFD simulations. Particular care has been also dedicated to the modeling of the atomization and secondary breakup processes occurring to the GDI sprays. The multi-hole jets have been simulated by means of a new atomization approach combined with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model.
Technical Paper

Investigation of the Effect of Boost Pressure and Exhaust Gas Recirculation Rate on Nitrogen Oxide and Particulate Matter Emissions in Diesel Engines

2013-09-08
2013-24-0017
In recent years, due to the growing problem of environmental pollution and climate change internal combustion engine stroke volume size has been reduced. The use of down-sized engines provides benefit for reducing emissions and fuel consumption especially at the inner city driving conditions. However, when the engine demands additional power, utilizing a turbocharging system is required. This study is a joint work of Istituto Motori CNR with Automotive Laboratory of Mechanical Engineering Faculty of Istanbul Technical University (ITU) and the objective of this study was devoted to increase the understanding of various engine operating conditions on emissions, especially at low load. The trade-off between Nitrogen Oxide (NOx) and Particulate Matter (PM) emissions in a Diesel engine has been examined depending on turbocharging rates and the rate of Exhaust Gas Recirculation (EGR) applied.
Technical Paper

Physical-Chemical Characteristics of Diesel-Biodiesel Blends with Additives and Their Effects on the Spray Behavior

2013-09-08
2013-24-0035
A set of additives was selected to improve the durability of the physical-chemical and biological characteristics of mineral diesel and its blend with biodiesel. Two biodiesels were used: soybean (SME) and rapeseed (RME). Both physical-chemical properties and fuel dispersion of fuel blends and their mixtures with additives were measured that could have effects on the combustion process in diesel engines. The dispersion of the fuel is affected by the injection nozzle integrity, influencing the capacity of the fuel to vaporize, while the modification of the fuel molecular structure can cause changes in combustion reaction. A 7 hole Common Rail (CR) 2nd generation injector, 136 μm in diameter, was used at 80 MPa and 1.0 ms injection pressure and duration, respectively. The injection rate was determined using the Bosch's Method, while the fuel dispersion was measured by analyzing the images of spray evolving in an optical accessible quiescent vessel.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
Technical Paper

Outwardly Opening Hollow-Cone Diesel Spray Characterization under Different Ambient Conditions

2018-09-10
2018-01-1694
The combustion quality in modern diesel engines depends strictly on the quality of the air-fuel mixing and, in turn, from the quality of spray atomization process. So air-fuel mixing is strongly influenced by the injection pressure, geometry of the nozzle duct and the hydraulic characteristics of the injector. In this context, spray concepts alternative to the conventional multi-hole nozzles could be considered as solutions to the extremely high injection pressure increase to assure a higher and faster fuel-air mixing in the piston bowl, with the final target of increasing the fuel efficiency and reducing the engine emissions. The study concerns an experimental depiction of a spray generated through a prototype high-pressure hollow-cone nozzle, under evaporative and non-evaporative conditions, injecting the fuel in a constant-volume combustion vessel controlled in pressure and temperature up to engine-like gas densities in order to measure the spatial and temporal fuel patterns.
Technical Paper

Real Time Control of GDI Fuel Injection during Ballistic Operation Mode

2015-09-06
2015-24-2428
Gasoline direct injection (GDI) combustion with un-throttled lean stratified operation allows to reduce engine toxic emissions and achieve significant benefits in terms of fuel consumption. However, use of gasoline stratified charges can lead to several problems, such as a high cycle-to-cycle variability and increased particle emissions. Use of multiple injection strategies allows to mitigate these problems, but it requires the injection of small fuel amounts forcing the traditional solenoid injectors to work in their “ballistic” region, where the correlation between coil energizing time and injected fuel amount becomes highly not linear. In the present work a closed-loop control system able to manage the delivery of small quantities of fuel has been introduced. The control system is based on a particular feature found on the coil voltage command signal during the de-energizing phase.
X