Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Alternative Diesel Fuels Characterization in Non-Evaporating and Evaporating Conditions for Diesel Engines

2010-05-05
2010-01-1516
This paper reports the study of the effects of alternative diesel fuel and the impact for the air-fuel mixture preparation. The injection process characterization has been carried out in a non-evaporative high-density environment in order to measure the fuel injection rate and the spatial and temporal distribution of the fuel. The injection and vaporization processes have been characterized in an optically accessible single cylinder Common Rail diesel engine representing evaporative conditions similar to the real engine. The tests have been performed by means of a Bosch second generation common rail solenoid-driven fuel injection system with a 7-holes nozzle, flow number 440 cc/30s @100bar, 148deg cone opening angle (minisac type). Double injection strategy (pilot+main) has been implemented on the ECUs corresponding to operative running conditions of the commercial EURO 5 diesel engine.
Journal Article

The Evaluation of a New Kinematic Emissions Model on Real and Simulated Driving Cycles

2010-05-05
2010-01-1564
The evaluation of vehicles real emissions circulating in urban areas is a basic activity for planning and management of implemented traffic measures aiming at emission control and air quality improvement. National, region, and city emission inventories require overall average emission estimation based on modeling technique with a few input parameters such as fleet composition and mission profile, represented by average speed. But in the field of emission modeling an important open issue is the very expensive costs of experimental campaigns needed to obtain driving cycle statistically representative of driving behavior, also if only in a specific link of a network. A possible approach to deal with this problem is represented by the use of traffic microscopic simulation models which are capable to simulate individual car motion on the basis of traffic conditions, road characteristics and management rules.
Journal Article

Fuel Consumption Optimization and Noise Reduction in a Spark-Ignition Turbocharged VVA Engine

2013-04-08
2013-01-1625
Modern VVA systems offer new potentialities in improving the fuel consumption for spark-ignition engines at low and medium load, meanwhile they grant a higher volumetric efficiency and performance at high load. Recently introduced systems enhance this concept through the possibility of concurrently modifying the intake valve opening, closing and lift leading to the development of almost "throttle-less" engines. However, at very low loads, the control of the air-flow motion and the turbulence intensity inside the cylinder may require to select a proper combination of the butterfly throttling and the intake valve control, to get the highest BSFC (Brake Specific Fuel Consumption) reduction. Moreover, a low throttling, while improving the fuel consumption, may also produce an increased gas-dynamic noise at the intake mouth. In highly "downsized" engines, the intake valve control is also linked to the turbocharger operating point, which may be changed by acting on the waste-gate valve.
Journal Article

UV-visible Optical Characterization of the Early Combustion Stage in a DISI Engine Fuelled with Butanol-Gasoline Blend

2013-10-14
2013-01-2638
Detailed experimental information on the early stages of spark ignition process represent a substantial part for guiding the development of engines with higher efficiencies and reduced pollutant emissions. Flame kernel formation influences strongly combustion development inside the cylinder, especially for a direct injection spark ignition engine. This study presents the analysis of the evolution of spark-ignited flame kernels with detailed view upon cycle-to-cycle variations. Experiments are performed in a SI optical engine equipped with the cylinder head and injection system of a commercial turbocharged engine. Blend of commercial gasoline and butanol (40% by volume) is tested at stoichiometric and lean mixture conditions. Experiments are carried out at 2000 rpm through conventional tests (based on in-cylinder pressure measurements and exhaust emission analysis) and through optical diagnostics. In particular, UV-visible digital imaging and natural emission spectroscopy are applied.
Journal Article

Experimental Evaluation of Compression Ratio Influence on the Performance of a Dual-Fuel Methane-Diesel Light-Duty Engine

2015-09-06
2015-24-2460
The paper reports an experimental study on the effect of compression ratio variation on the performance and pollutant emissions of a single-cylinder light-duty research diesel engine operating in DF mode. The architecture of the combustion system as well as the injection system represents the state-of-the-art of the automotive diesel technology. Two pistons with different bowl volume were selected for the experimental campaign, corresponding to two CR values: 16.5 and 14.5. The designs of the piston bowls were carefully performed with the 3D simulation in order to maintain the same air flow structure at the piston top dead center, thus keeping the same in-cylinder flow characteristics versus CR. The engine tests choice was performed to be representative of actual working conditions of an automotive light-duty diesel engine.
Journal Article

Experimental Evaluation of an Advanced Ignition System for GDI Engines

2015-09-06
2015-24-2520
A plasma ignition system was tested in a GDI engine with the target of combustion efficiency improvement without modifying engine configuration. The plasma was generated by spark discharge and successively sustained to enhance its duration up to 4 ms. The innovative ignition system was tested in an optically accessible single-cylinder DISI engine to investigate the effects of plasma on kernel stability and flame front propagation under low loads and lean mixture (λ≅1.3). The engine was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). All experiments were performed at 2000 rpm and 100 bar injection pressure. UV-visible 2D chemiluminescence was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. A bandpass filter allowed selecting luminous signal due to OH radicals.
Journal Article

A Modeling Study of Cyclic Dispersion Impact on Fuel Economy for a Small Size Turbocharged SI Engine

2016-10-17
2016-01-2230
In this paper, the results of an extensive experimental analysis regarding a twin-cylinder spark-ignition turbocharged engine are employed to build up an advanced 1D model, which includes the effects of cycle-by-cycle variations (CCVs) on the combustion process. Objective of the activity is to numerically estimate the CCV impact primarily on fuel consumption and knock behavior. To this aim, the engine is experimentally characterized in terms of average performance parameters and CCVs at high and low load operation. In particular, both a spark advance and an air-to-fuel ratio (α) sweep are actuated. Acquired pressure signals are processed to estimate the rate of heat release and the main combustion events. Moreover, the Coefficient of Variation of IMEP (CoVIMEP) and of in-cylinder peak pressure (CoVpmax) are evaluated to quantify the cyclic dispersion and identify its dependency on peak pressure position.
Journal Article

Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle

2017-09-04
2017-24-0014
The technique of liquid Water Injection (WI) at the intake port of downsized boosted SI engines is a promising solution to improve the knock resistance at high loads. In this work, an existing 1D engine model has been extended to improve its ability to simulate the effects of the water injection on the flame propagation speed and knock onset. The new features of the 1D model include an improved treatment of the heat subtracted by the water evaporation, a newly developed correlation for the laminar flame speed, explicitly considering the amount of water in the unburned mixture, and a more detailed kinetic mechanism to predict the auto-ignition characteristics of fuel/air/water mixture. The extended 1D model is validated against experimental data collected at different engine speeds and loads, including knock-limited operation, for a twin-cylinder turbocharged SI engine.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Journal Article

UV-Visible Spectroscopic Measurements of Dual-Fuel PCCI Engine

2011-09-11
2011-24-0061
In this work, optical diagnostics were applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat bio-ethanol was performed in the intake manifold and European commercial diesel fuel was injected into the cylinder. Different amounts of bio-ethanol were injected in order to create PCCI combustion with high levels of pre-combustion mixing, and to ensure low equivalence ratio and low flame temperatures too. UV-Visible imaging and spectroscopic measurements were performed in the engine in order to investigate the autoignition of the charge and the combustion process, respectively. In particular, the detection of the species involved in the combustion, like OH, HCO, and CH, was performed. The relevance of the radicals and species on PCCI were evaluated and compared with the data from thermodynamic analysis.
Journal Article

Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions

2011-09-11
2011-24-0105
The present work relates to the investigation of the basic oxidation characteristics of iron and aluminium nanoparticles as well as the feasibility of their combustion under both Internal Combustion Engine (ICE)-like and real engine conditions. Based on a series of proof-of-concept experiments, combustion was found to be feasible taking place in a controllable way and bearing similarities to the respective case of conventional fuels. These studies were complimented by relevant in-situ and ex-situ/post-analysis, in order to elaborate the fundamental phenomena occurring during combustion as well as the extent and ‘quality’ of the process. The oxidation mechanisms of the two metallic fuels appear different and -as expected- the energy release during combustion of aluminium is significantly higher than that released in the case of iron.
Journal Article

Emissions and Combustion Behavior of a Bi-Fuel Gasoline and Natural Gas Spark Ignition Engine

2011-09-11
2011-24-0212
In the last ten years, the number of natural gas vehicles worldwide has grown rapidly with the biggest contribution coming from the Asia-Pacific and Latin America regions. As natural gas is the cleanest fossil fuel, the exhaust emissions from natural gas spark ignition vehicles are lower than those of gasoline powered vehicles. Moreover, natural gas is less affected by price fluctuations and its resources are more evenly widespread over the globe than to oil. However, as natural gas vehicles are usually bi-fuel gasoline and natural gas, the excellent knock resistant characteristics of natural gas cannot be completely exploited. This paper shows the results of an experimental activity performed on a passenger car fuelled alternatively by gasoline and compressed natural gas (CNG). The vehicle has been tested on a chassis dynamometer over standard (NEDC) and real driving cycles (Artemis CADC), allowing to investigate a wide range of operating conditions.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

Development of Chemistry-Based Laminar Flame Speed Correlation for Part-Load SI Conditions and Validation in a GDI Research Engine

2018-04-03
2018-01-0174
The detailed study of part-load conditions is essential to characterize engine-out emissions in key operating conditions. The relevance of part-load operations is further emphasized by the recent regulations such as the new WLTP standard. Combustion development at part-load operations depends on a complex interplay between moderate turbulence levels (low engine speed and tumble ratio), low in-cylinder pressure and temperature, and stoichiometric-to-lean mixture quality (to maximize fuel efficiency). From a modelling standpoint, the reduced turbulence intensity compared to full-load operations complicates the interaction between different sub-models (e.g., reconsideration of the flamelet hypothesis adopted by common combustion models). In this article, the authors focus on chemistry-based simulations for laminar flame speed of gasoline surrogates at conditions typical of part-load operations. The analysis is an extension of a previous study focused on full-load operations.
Journal Article

Real Time Emissive Behaviour of a Bi-Fuel Euro 4 SI Car in Naples Urban Area

2013-09-08
2013-24-0173
An experimental campaign was carried out to evaluate the influence of CNG and gasoline on the exhaust emissions and fuel consumption of a bi-fuel passenger car over on-road tests performed in the city of Naples. The chosen route is very traffic congested during the daytime of experimental measurements. An on-board analyzer was used to measure CO, CO2, NOx tailpipe concentrations and the exhaust flow rate. Throughout a carbon balance on the exhaust pollutants, the fuel consumption was estimated. The exact spatial position was acquired by a GPS which allowed to calculate vehicle speed and the traffic condition was monitored by a video camera. Whole trip realized by the vehicle was subdivided in succession of kinematic sequences and the vehicle emissions and fuel consumption were analyzed and presented as value on each kinematic sequence. Moreover, throughout a multivariate statistical analysis of sequences, the driving cycles characterizing the use of vehicle were identified.
Journal Article

Experimental Characterization of Diesel Combustion Using Glycerol Derived Ethers Mixtures

2013-09-08
2013-24-0104
In this paper the characteristics of a mixture of glycerol-based ethers usable in a compression ignition engine are investigated, in terms of efficiency and emissions. Alternative pathways for the energetic exploitation of biodiesel derived glycerol became of increasing interest as the biodiesel production was increased worldwide. Because of its detrimental physical and chemical properties, raw glycerol is hardly usable in conventional internal combustion engines (ICE). However, etherification of glycerol with tert-butyl alcohol and isobutylene allows obtaining a mixture mainly composed of higher glycerol ethers (GEM) suitable for compression ignition engines. Thus, the aim of this research study was to test a mixture of mono-, di- and tri-tert-butyl ethers of glycerol in blend with a commercial diesel fuel in a compression ignition engine, evaluating the fuel efficiency and the impact on the pollutant emissions.
Journal Article

Non-Intrusive Investigation in a Small GDI Optical Engine Fuelled with Gasoline and Ethanol

2011-04-12
2011-01-0140
The aim of this paper is the experimental investigation of the effect of direct fuel injection on the combustion process and pollutant formation in a spark ignition (SI) two-wheel engine. The engine is a 250cc single cylinder, four-stroke spark-ignition firstly equipped with a four-valve PFI head and then with GDI one operating with European commercial gasoline and Bio-ethanol. It is equipped with a wide sapphire window in the bottom of the chamber and quartz cylinder. In the combustion chamber, optical techniques based on 2D-digital imaging were used to follow the injection and flame propagation and spectroscopic measurements were carried out in order to evaluate the main radical species. Radical species such as OH and CH were detected and used to follow the chemical phenomena related to the fuel quality. Measurements were carried out at different engine speeds and combustion strategies based on different injection pressures.
Journal Article

Characterization of CH4 and CH4/H2 Mixtures Combustion in a Small Displacement Optical Engine

2013-04-08
2013-01-0852
In the last years, even more attention was paid to the alternative fuels which can allow both reducing the fuel consumption and the pollutant emissions. Among gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels leading to lower CO₂ emissions; if compared to gasoline, CH₄ has wider flammable limits and better anti-knock properties, but lower flame speed. The addition of H₂ to CH₄ can improve the already good qualities of methane and compensate its weak points. In this paper a comparison was carried out between CH₄ and different CH₄/H₂ mixtures. The measurements were carried out in an optically accessible small single-cylinder, Port Fuel Injection spark ignition (PFI SI), four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycle engine representative of the most popular two-wheel vehicles in Europe.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Journal Article

Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods

2015-04-14
2015-01-0397
The present paper deals with a comprehensive analysis of the knocking phenomenon through experiments and numerical simulations. Conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine. The engine exhibits optical accesses to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones. Optical data are correlated to in-cylinder pressure-based indicated analyses in a cycle resolved approach.
X