Refine Your Search

Topic

Author

Search Results

Journal Article

The Evaluation of a New Kinematic Emissions Model on Real and Simulated Driving Cycles

2010-05-05
2010-01-1564
The evaluation of vehicles real emissions circulating in urban areas is a basic activity for planning and management of implemented traffic measures aiming at emission control and air quality improvement. National, region, and city emission inventories require overall average emission estimation based on modeling technique with a few input parameters such as fleet composition and mission profile, represented by average speed. But in the field of emission modeling an important open issue is the very expensive costs of experimental campaigns needed to obtain driving cycle statistically representative of driving behavior, also if only in a specific link of a network. A possible approach to deal with this problem is represented by the use of traffic microscopic simulation models which are capable to simulate individual car motion on the basis of traffic conditions, road characteristics and management rules.
Journal Article

Experimental Evaluation of an Advanced Ignition System for GDI Engines

2015-09-06
2015-24-2520
A plasma ignition system was tested in a GDI engine with the target of combustion efficiency improvement without modifying engine configuration. The plasma was generated by spark discharge and successively sustained to enhance its duration up to 4 ms. The innovative ignition system was tested in an optically accessible single-cylinder DISI engine to investigate the effects of plasma on kernel stability and flame front propagation under low loads and lean mixture (λ≅1.3). The engine was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). All experiments were performed at 2000 rpm and 100 bar injection pressure. UV-visible 2D chemiluminescence was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. A bandpass filter allowed selecting luminous signal due to OH radicals.
Journal Article

A Modeling Study of Cyclic Dispersion Impact on Fuel Economy for a Small Size Turbocharged SI Engine

2016-10-17
2016-01-2230
In this paper, the results of an extensive experimental analysis regarding a twin-cylinder spark-ignition turbocharged engine are employed to build up an advanced 1D model, which includes the effects of cycle-by-cycle variations (CCVs) on the combustion process. Objective of the activity is to numerically estimate the CCV impact primarily on fuel consumption and knock behavior. To this aim, the engine is experimentally characterized in terms of average performance parameters and CCVs at high and low load operation. In particular, both a spark advance and an air-to-fuel ratio (α) sweep are actuated. Acquired pressure signals are processed to estimate the rate of heat release and the main combustion events. Moreover, the Coefficient of Variation of IMEP (CoVIMEP) and of in-cylinder peak pressure (CoVpmax) are evaluated to quantify the cyclic dispersion and identify its dependency on peak pressure position.
Journal Article

Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle

2017-09-04
2017-24-0014
The technique of liquid Water Injection (WI) at the intake port of downsized boosted SI engines is a promising solution to improve the knock resistance at high loads. In this work, an existing 1D engine model has been extended to improve its ability to simulate the effects of the water injection on the flame propagation speed and knock onset. The new features of the 1D model include an improved treatment of the heat subtracted by the water evaporation, a newly developed correlation for the laminar flame speed, explicitly considering the amount of water in the unburned mixture, and a more detailed kinetic mechanism to predict the auto-ignition characteristics of fuel/air/water mixture. The extended 1D model is validated against experimental data collected at different engine speeds and loads, including knock-limited operation, for a twin-cylinder turbocharged SI engine.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Journal Article

Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions

2011-09-11
2011-24-0105
The present work relates to the investigation of the basic oxidation characteristics of iron and aluminium nanoparticles as well as the feasibility of their combustion under both Internal Combustion Engine (ICE)-like and real engine conditions. Based on a series of proof-of-concept experiments, combustion was found to be feasible taking place in a controllable way and bearing similarities to the respective case of conventional fuels. These studies were complimented by relevant in-situ and ex-situ/post-analysis, in order to elaborate the fundamental phenomena occurring during combustion as well as the extent and ‘quality’ of the process. The oxidation mechanisms of the two metallic fuels appear different and -as expected- the energy release during combustion of aluminium is significantly higher than that released in the case of iron.
Journal Article

Emissions and Combustion Behavior of a Bi-Fuel Gasoline and Natural Gas Spark Ignition Engine

2011-09-11
2011-24-0212
In the last ten years, the number of natural gas vehicles worldwide has grown rapidly with the biggest contribution coming from the Asia-Pacific and Latin America regions. As natural gas is the cleanest fossil fuel, the exhaust emissions from natural gas spark ignition vehicles are lower than those of gasoline powered vehicles. Moreover, natural gas is less affected by price fluctuations and its resources are more evenly widespread over the globe than to oil. However, as natural gas vehicles are usually bi-fuel gasoline and natural gas, the excellent knock resistant characteristics of natural gas cannot be completely exploited. This paper shows the results of an experimental activity performed on a passenger car fuelled alternatively by gasoline and compressed natural gas (CNG). The vehicle has been tested on a chassis dynamometer over standard (NEDC) and real driving cycles (Artemis CADC), allowing to investigate a wide range of operating conditions.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

Development of Chemistry-Based Laminar Flame Speed Correlation for Part-Load SI Conditions and Validation in a GDI Research Engine

2018-04-03
2018-01-0174
The detailed study of part-load conditions is essential to characterize engine-out emissions in key operating conditions. The relevance of part-load operations is further emphasized by the recent regulations such as the new WLTP standard. Combustion development at part-load operations depends on a complex interplay between moderate turbulence levels (low engine speed and tumble ratio), low in-cylinder pressure and temperature, and stoichiometric-to-lean mixture quality (to maximize fuel efficiency). From a modelling standpoint, the reduced turbulence intensity compared to full-load operations complicates the interaction between different sub-models (e.g., reconsideration of the flamelet hypothesis adopted by common combustion models). In this article, the authors focus on chemistry-based simulations for laminar flame speed of gasoline surrogates at conditions typical of part-load operations. The analysis is an extension of a previous study focused on full-load operations.
Journal Article

Real Time Emissive Behaviour of a Bi-Fuel Euro 4 SI Car in Naples Urban Area

2013-09-08
2013-24-0173
An experimental campaign was carried out to evaluate the influence of CNG and gasoline on the exhaust emissions and fuel consumption of a bi-fuel passenger car over on-road tests performed in the city of Naples. The chosen route is very traffic congested during the daytime of experimental measurements. An on-board analyzer was used to measure CO, CO2, NOx tailpipe concentrations and the exhaust flow rate. Throughout a carbon balance on the exhaust pollutants, the fuel consumption was estimated. The exact spatial position was acquired by a GPS which allowed to calculate vehicle speed and the traffic condition was monitored by a video camera. Whole trip realized by the vehicle was subdivided in succession of kinematic sequences and the vehicle emissions and fuel consumption were analyzed and presented as value on each kinematic sequence. Moreover, throughout a multivariate statistical analysis of sequences, the driving cycles characterizing the use of vehicle were identified.
Journal Article

Experimental Characterization of Diesel Combustion Using Glycerol Derived Ethers Mixtures

2013-09-08
2013-24-0104
In this paper the characteristics of a mixture of glycerol-based ethers usable in a compression ignition engine are investigated, in terms of efficiency and emissions. Alternative pathways for the energetic exploitation of biodiesel derived glycerol became of increasing interest as the biodiesel production was increased worldwide. Because of its detrimental physical and chemical properties, raw glycerol is hardly usable in conventional internal combustion engines (ICE). However, etherification of glycerol with tert-butyl alcohol and isobutylene allows obtaining a mixture mainly composed of higher glycerol ethers (GEM) suitable for compression ignition engines. Thus, the aim of this research study was to test a mixture of mono-, di- and tri-tert-butyl ethers of glycerol in blend with a commercial diesel fuel in a compression ignition engine, evaluating the fuel efficiency and the impact on the pollutant emissions.
Technical Paper

Effects of Low Temperature Premixed Combustion (LTPC) on Emissions of a Modern Diesel Engine for Passenger Cars

2010-04-12
2010-01-0333
In this paper, a Low Temperature Premixed Combustion (LTPC) was investigated employing a four cylinder D.I. common rail Diesel engine, used for passenger cars on the European market. Experiments were carried out setting the engine speed at 2500 rpm with a fuel amount of 26 mg/str to realize an operating condition close to the point of NEDC at 0.8 MPa of BMEP. The experimental approach was the management of the start of injection, injection pressure and EGR rates as a method to control NOx and soot production. The investigation was first carried out testing engine performances and emissions as set from the commercial engine map. Afterward, engine tests were carried out exploring performances, gaseous and smoke emissions at late start of combustion [10 to 17.5 cad ATDC], injection pressures from 80 to 120 MPa and EGR rates up to 50%.
Technical Paper

Multiple Injection in a Mixed Mode GDI Boosted Engine

2010-05-05
2010-01-1496
A numerical investigation is performed with the aim of understanding the potential benefits of multiple injections in the mixed mode boosting operation of a Gasoline Direct Injection (GDI) engine. The study is carried out by firstly characterizing a high pressure multi-hole injector from the experimental point of view in the split injection operation. Measurements of the fuel injection rate are made through an AVL Meter operating on the Bosch principle. The injector is tested using gasoline in a double pulse strategy. The injection pressure is varied between 5.0 and 25.0 MPa with the pulse durations calibrated for delivering a total mass up to 50 mg/str. The choice of the dwell time between two successive injection events is achieved by firstly defining the minimum time compatible with the mechanical characteristics of both the injector and the injector driver.
Technical Paper

Idle Speed Control of GDI-SI Engines via ECU-1D Engine Co-Simulation

2010-10-25
2010-01-2220
Idle Speed Control plays a crucial role to reduce fuel consumption that turns in both a direct economic benefit for customers and CO\d reduction particularly important to tackle the progressive global environmental warming. Typically, control strategies available in the automotive literature solve the idle speed control problem acting both on the throttle position and the spark advance, while the Air-Fuel Ratio (AFR), that strongly affects the indicated engine torque, is kept at the stoichiometric value for the sake of emission reduction. Gasoline Direct Injection (GDI) engines, working lean and equipped with proper mechanisms to reduce NOx emissions, overcome this limitation allowing the AFR to be used for the idle speed regulation.
Technical Paper

Optimization of Control Parameters for a Heavy-Duty CNG Engine via Co-Simulation Analysis

2011-04-12
2011-01-0704
Internal combustion engines for vehicle propulsion are more and more sophisticated due to increasingly restrictive environmental regulations. In case of heavy-duty engines, Compressed Natural Gas (CNG) fueling coupled with Three-Way Catalyst (TWC) and Exhaust Gas Recirculation (EGR) can help in meeting the imposed emission limits and preventing from thermal stress of engine components. To cope with the new issues associated with the more complex hardware and to improve powertrain performance and reliability and after-treatment efficiency, the engine control strategies must be reformulated. The paper focuses on the steady-state optimization of control parameters for a heavy-duty engine fueled by CNG and equipped with turbocharger and EGR. The optimization analysis is carried out to design EGR, spark timing and wastegate control, aimed at increasing fuel economy while reducing in-cylinder temperature to prevent from thermal stress of engine components.
Technical Paper

Iso-Octane Spray from a GDI Multi-Hole Injector under Non- and Flash Boiling Conditions

2017-10-08
2017-01-2319
GDI injection systems have become dominant in passenger cars due to their flexibility in managing and advantages in the fuel economy. With the increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the fuel spray behavior has become essential. Different engine loads produce in a variety of fuel supplying conditions that affect the air/fuel mixture preparation and influence the efficiency and pollutant production. The flash boiling is a particular state that occurs for peculiar thermodynamic conditions of the engine. It could strongly influence the mixture in sub-atmospheric environments with detrimental effects on emissions. In order to obtain an in-depth understanding of the flash boiling phenomena, it is necessary to study the parameters influencing the mixture formation and their appearance in diverse engine conditions.
Technical Paper

Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR

2016-04-05
2016-01-0710
Considering the generalized diversification of the energy mix, the use of alcohols as gasoline replacement is proposed as a viable option. Also, alternative control strategies for spark ignition engines (SI) such as lean operation and exhaust gas recirculation (EGR) are used on an ever wider scale for improving fuel economy and reducing the environmental impact of automotive engines. In order to increase the stability of these operating points, alternative ignition systems are currently investigated. Within this context, the present work deals about the use of plasma assisted ignition (PAI) in a direct injection (DI) SI engine under lean conditions and cooled EGR, with gasoline and n-butanol fueling. The PAI system was tested in an optically accessible single-cylinder DISI engine equipped with the head of a commercial turbocharged power unit with similar geometrical specifications (bore, stroke, compression ratio).
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Technical Paper

Effects of Low Temperature Combustion on Particle and Gaseous Emission of a Dual Fuel Light Duty Engine

2017-09-04
2017-24-0081
In recent years the use of alternative fuels for internal combustion engines has had a strong push coming from both technical and economic-environmental aspects. Among these, gaseous fuels such as liquefied petroleum gas and natural gas have occupied a segment no longer negligible in the automotive industry, thanks to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions and cost effectiveness. On the other hand, diesel engines still represent the reference category among the internal combustion engines in terms of fuel consumptions. The possibility offered by the dual fuel systems, to combine the efficiency and performance of a diesel engine with the environmental advantages of gaseous fuels, has been long investigated. However the simple replacement of diesel fuel with natural gas does not allow to optimize the performance of the engine due to the high THC emissions particularly at lower loads.
X