Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Technical Paper

Investigation of Diesel Injector Nozzle Flow Number Impact on Spray Formation and Combustion Evolution by Optical Diagnostics

2012-04-16
2012-01-0701
The present paper describes an experimental investigation over the impact of diesel injector nozzle flow number on spray formation and combustion evolution for a modern EURO5 light-duty diesel engine. The analysis has been carried out by coupling the investigations in non evaporative spray bomb to tests in optical single cylinder engine in firing conditions. The research activity, which is the result of a collaborative project between Istituto Motori Napoli - CNR and GM Powertrain Europe, is devoted to understanding the basic operating behaviour of low flow number nozzles which are showing promising improvements in diesel engine behaviour at partial load. In fact, because of the compelling need to push further emission, efficiency, combustion noise and power density capabilities of the last-generation diesel engines, the combination of high injection pressure fuel pumps and low flow number nozzles is general trend among major OEMs.
Technical Paper

Impact of the Nozzle Coking on Spray Formation for Diesel Injectors

2013-10-14
2013-01-2546
The performance and emission characteristics of the compression ignition engines are largely governed by the fuel atomization and air mixing, processes which in turn are strongly influenced by the flow dynamics inside the injector nozzle. This is controlled by dynamic (injection pressure, needle lift, etc.) and geometrical factors (orifice conicity, hydro grinding, etc.). Moreover, the modern diesel fuel injection systems are susceptible of deposits formation that can occur in different locations, e.g. in nozzle spray-holes and inside the injector body. The present paper describes the results of a research project aimed at studying the impact of injector coking on diesel spray formation for three injectors with different flow numbers. The characterization of the injection process has been carried out in terms of fuel injection rate as well as spatial and temporal fuel distribution in a quiescent chamber in non evaporative conditions.
Technical Paper

Physical-Chemical Characteristics of Diesel-Biodiesel Blends with Additives and Their Effects on the Spray Behavior

2013-09-08
2013-24-0035
A set of additives was selected to improve the durability of the physical-chemical and biological characteristics of mineral diesel and its blend with biodiesel. Two biodiesels were used: soybean (SME) and rapeseed (RME). Both physical-chemical properties and fuel dispersion of fuel blends and their mixtures with additives were measured that could have effects on the combustion process in diesel engines. The dispersion of the fuel is affected by the injection nozzle integrity, influencing the capacity of the fuel to vaporize, while the modification of the fuel molecular structure can cause changes in combustion reaction. A 7 hole Common Rail (CR) 2nd generation injector, 136 μm in diameter, was used at 80 MPa and 1.0 ms injection pressure and duration, respectively. The injection rate was determined using the Bosch's Method, while the fuel dispersion was measured by analyzing the images of spray evolving in an optical accessible quiescent vessel.
Technical Paper

Tomography of a GDI Spray by PolyCO Based X-Ray Technique

2013-09-08
2013-24-0040
In this paper the investigation with X-ray Tomography on the structure of a gasoline spray from a GDI injector for automotive applications based on polycapillary optics is reported. Table-top experiment using a microfocus Cu Kα X-ray source for radiography and tomography has been used in combination with a polycapillary halflens and a CCD detector. The GDI injector is inserted in a high-pressure rotating device actuated with angular steps Δθ = 1° at the injection pressure of 8.0 MPa. The sinogram reconstruction of the jets by slices permits a 360° spray access to the fuel downstream the nozzle tip. A spatial distribution of the fuel is reported along the direction of six jets giving a measure of the droplet concentration in a circle of 16 mm2 below the nozzle tip at atmospheric backpressure and ambient temperature.
Technical Paper

Outwardly Opening Hollow-Cone Diesel Spray Characterization under Different Ambient Conditions

2018-09-10
2018-01-1694
The combustion quality in modern diesel engines depends strictly on the quality of the air-fuel mixing and, in turn, from the quality of spray atomization process. So air-fuel mixing is strongly influenced by the injection pressure, geometry of the nozzle duct and the hydraulic characteristics of the injector. In this context, spray concepts alternative to the conventional multi-hole nozzles could be considered as solutions to the extremely high injection pressure increase to assure a higher and faster fuel-air mixing in the piston bowl, with the final target of increasing the fuel efficiency and reducing the engine emissions. The study concerns an experimental depiction of a spray generated through a prototype high-pressure hollow-cone nozzle, under evaporative and non-evaporative conditions, injecting the fuel in a constant-volume combustion vessel controlled in pressure and temperature up to engine-like gas densities in order to measure the spatial and temporal fuel patterns.
Technical Paper

Flash Boiling Evidences of a Multi-Hole GDI Spray under Engine Conditions by Mie-Scattering Measurements

2015-09-01
2015-01-1945
During an injection process, a fluid undergoes a sudden pressure drop across the nozzle. If the pressure downstream the injector is below the saturation value of the fluid, superheated conditions are reached and thermodynamic instabilities realized. In internal combustion engines, flashing conditions greatly influence atomization and vaporization processes of a fuel as well as the mixture formation and combustion. This paper reports imaging behavior of a fuel under both flash boiling and non-flash boiling conditions. A GDI injector, eight-hole, 15.0 cc/s @ 10 MPa static flow, injected a single-component fluid (iso-octane), generating the spray. Experiments were carried out in an optically-accessible constant-volume quiescent vessel by Mie-scattering technique. A C-Mos high-speed camera was used to acquire cycle-resolved images of the spray evolving in the chamber filled with N2 which pressure ranged between 0.05 and 0.3 MPa.
X