Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Off-Gassing and Particle Release by Heated Polymeric Materials

2008-06-29
2008-01-2090
Polymers are one of the major constituents in electrical components. A study investigating pre-combustion off-gassing and particle release by polymeric materials over a range of temperatures can provide an understanding of thermal degradation prior to failure which may result in a fire hazard. In this work, we report simultaneous measurements of pre-combustion vapor and particle release by heated polymeric materials. The polymer materials considered for the current study are silicone and Kapton. The polymer samples were heated over the range 20 to 400°C. Response to vapor releases were recorded using the JPL Electronic Nose (ENose) and Industrial Scientific's ITX gas monitor configured to detect hydrogen chloride (HCl), carbon monoxide (CO) and hydrogen cyanide (HCN). Particle release was monitored using a TSI P-TRAK particle counter.
Technical Paper

General Motors Full Scale Wind Tunnel Upgrade

2020-04-14
2020-01-0687
The General Motors Aero Lab’s Full-Scale Wind Tunnel Facility, which came into operation in August of 1980[1], has undergone the significant upgrade of installing a state-of-the-art moving ground plane system. After almost four decades of continuous use the full-scale wind tunnel also received some significant maintenance to other areas, including a new heat exchanger, main fan overhaul, and replacement of the test section acoustic treatment. A 5-belt system was installed along with an integrated vehicle lift system. The center belt measures 8.5m long and can accommodate two belt widths of 1100mm and 950mm. Flow quality and other wind tunnel performance parameters were maintained to prior specifications which are on par with the latest industry standards [2]. The new 5-belt rolling road system maintains GM’s industry leading vehicle aerodynamic development and the improved acoustic panels ensure GM continues to develop vehicles with leading class acoustics.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

A New Method for Breath Capture Inside a Space Suit Helmet

2007-07-09
2007-01-3248
This project investigates methods to capture an astronaut's exhaled carbon dioxide (CO2) before it becomes diluted with the high volumetric oxygen flow present within a space suit. Typical expired breath contains CO2 partial pressures (pCO2) in the range of 20-35 mm Hg (.0226-.046 atm). This research investigates methods to capture the concentrated CO2 gas stream prior to its dilution with the low pCO2 ventilation flow. Specifically this research is looking at potential designs for a collection cup for use inside the space suit helmet. The collection cup concept is not the same as a breathing mask typical of that worn by firefighters and pilots. It is well known that most members of the astronaut corps view a mask as a serious deficiency in any space suit helmet design. Instead, the collection cup is a non-contact device that will be designed using a detailed Computational Fluid Dynamic (CFD) analysis of the ventilation flow environment within the helmet.
Technical Paper

Development of a Test Facility for Air Revitalization Technology Evaluation

2007-07-09
2007-01-3161
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center (JSC) serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat by up to eight persons. A variety of gas analyzers and dew point sensors are used to monitor the chamber atmosphere and the process flow upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space.
Technical Paper

Overview of the Vehicle Cabin Atmosphere Monitor, a Miniature Gas Chromatograph/Mass Spectrometer for Trace Contamination Monitoring on the ISS and CEV

2007-07-09
2007-01-3150
Work is underway to deliver an instrument for analysis of the atmosphere aboard the International Space Station. The Vehicle Cabin Atmosphere Monitor (VCAM) is based on a low-mass, low-power miniature preconcentrator gas chromatograph/mass spectrometer (PCGC/MS) capable of providing sub-ppm measurements of volatile constituents in a space vehicle or outpost. VCAM is designed to operate autonomously, maintenance-free, once per day, with its own carrier and calibration gas supplies sufficient for a one-year lifetime. VCAM performance is sufficient to detect and identify 90% of the target compounds specified at their 180-day Spacecraft Maximum Allowable Concentration (SMAC) levels. The flight units will be delivered in mid-2008 and be operated in the ISS EXPRESS rack.
Technical Paper

ISRU Production of Life Support Consumables for a Lunar Base

2007-07-09
2007-01-3106
Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5°S, 0°E) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.
Technical Paper

Viral Populations within the International Space Station's Internal Active Thermal Control System Ground Support and Potential Flight Hardware

2007-07-09
2007-01-3108
The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) contains an aqueous, alkaline fluid (pH 9.5±0.5) that aids in maintaining a habitable environment for the crew. Because microbes have significant potential to cause disease, adverse effects on astronaut health, and microbe-induced corrosion, the presence of both bacteria and viruses within IATCS fluids is of concern. This study sought to detect and identify viral populations in IATCS samples obtained from the Kennedy Space Center as a first step towards characterizing and understanding potential risks associated with them. Samples were concentrated and viral nucleic acids (NA) extracted providing solutions containing 8.87-22.67 μg NA per mL of heat transfer fluid. After further amplification viral DNA and cDNA were then pooled, fluorescently labeled, and hybridized onto a Combimatrix panvira 12K microarray containing probes for ∼1,000 known human viruses.
Technical Paper

Comparison Studies of Candidate Nutrient Delivery Systems for Plant Cultivation in Space

1997-07-01
972304
A reliable nutrient delivery system is essential for long-term cultivation of plants in space. At the Kennedy Space Center, a series of ground-based tests are being conducted to compare candidate plant nutrient delivery systems for space. To date, our major focus has concentrated on the Porous Tube Plant Nutrient Delivery System, the ASTROCULTURE™ System, and a zeoponic plant growth substrate. The merits of each system are based upon the performance of wheat supported over complete growth cycles. To varying degrees, each system supported wheat biomass production and showed distinct patterns for plant nutrient uptake and water use.
Technical Paper

Demonstration of Oxygen Production on the Moon and Mars

1997-07-01
972498
Scientists and engineers at NASA are currently developing flight instruments which will demonstrate oxygen production on the Moon and Mars. REGA will extract oxygen from the lunar regolith, measure implanted solar wind and indigenous gases, and monitor the lunar atmosphere. MIP will demonstrate oxygen production on Mars, along with key supporting technologies including filtration, atmospheric acquisition and compression, thermal management, solar cell performance, and dust removal.
Technical Paper

Bioregenerative Planetary Life Support Systems Test Complex: Facility Description and Testing Objectives

1997-07-01
972342
As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support facility capable of supporting long-duration testing of integrated bioregenerative life support systems with human test crews. This facility, the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), is currently under development at the Johnson Space Center. The BIO-Plex is comprised of a set of interconnected test chambers with a sealed internal environment capable of supporting test crews of four individuals for periods exceeding one year. The life support systems to be tested will consist of both biological and physicochemical technologies and will perform all required air revitalization, water recovery, biomass production, food processing, solid waste processing, thermal management, and integrated command and control functions.
Technical Paper

Sojourner Mars Rover Thermal Performance

1998-07-13
981685
The Sojourner Rover landed on the surface of Mars on July 4, 1997 as part of the Mars Pathfinder Mission. The mission lasted almost three months during which the thermal design of the Rover was tested. This paper summarizes the Rover's design and performance as well as post-mission model correlation.
Technical Paper

Interactive Simulation-Based Testing of Product Gas Transfer Integrated Monitoring and Control Software for the Lunar Mars Life Support Phase III Test

1998-07-13
981769
Gas transfer systems in a closed life support test were controlled by intelligent layered monitoring and control software. Interactive simulation-based testing was used for system-level validation of the discrete sequencer layer of the software. An advanced discrete event simulation tool was used to model diverse components and systems for processing gases in a plant growth chamber, crew chamber and incinerator, and transferring gases between chambers. Models included physico-chemical and biological gas processors, pumps, concentrators, chambers and tanks, and devices for configuring and controlling gas transfer. Several types of control were modeled. This paper describes the models, the testing approach, and some results of the testing.
Technical Paper

Results from the Vehicle Cabin Atmosphere Monitor: A Miniature Gas Chromatograph/Mass Spectrometer for Trace Contamination Monitoring on the ISS and Orion

2008-01-29
2008-01-2045
Progress on the delivery of the Vehicle Cabin Atmosphere Monitor (VCAM) is reported. VCAM is an autonomous trace-species detector to be used aboard the International Space Station (ISS) for atmospheric analysis. The instrument is based on a low-mass, low-power miniature preconcentrator, gas chromatograph, and Paul ion trap mass spectrometer (PCGC/MS) capable of measuring volatile constituents in a space vehicle or planetary outpost at sub-ppm levels. VCAM detects and quantifies 40 target compounds at their 180-day Spacecraft Maximum Allowable Concentration (SMAC) levels. It is designed to operate autonomously, maintenance-free, with a self-contained carrier and calibration gas supplies sufficient for a one-year lifetime. Two flight units will be delivered for operation in the ISS EXPRESS rack.
Technical Paper

Life Support Requirements and Technology Challenges for NASA's Constellation Program

2008-06-29
2008-01-2018
NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for extended durations at the lunar outpost with limited resource resupply capability will require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration Extra-vehicular Activity's (EVA's) will be particularly challenging.
Technical Paper

Thermal Vacuum Testing of the Orbiting Carbon Observatory Instrument

2008-06-29
2008-01-2036
The Orbiting Carbon Observatory (OCO) instrument is scheduled for launch onboard an Orbital Sciences Corporation LEOStar-2 architecture spacecraft in December 2008. The instrument will collect data to identify CO2 sources and sinks and quantify their seasonal variability. OCO observations will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. OCO has three bore-sighted, high resolution, grating spectrometers which share a common telescope with similar optics and electronics. A 0.765 μm channel will be used for O2 observations, while the weak and strong CO2 bands will be observed with 1.61 μm and 2.06 μm channels, respectively. The OCO spacecraft circular polar orbit will be sun-synchronous with an inclination of 98.2 degrees, mean altitude of 705 km and 98.9 minute orbit period.
Technical Paper

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-06-29
2008-01-2101
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft, but additional data was needed on the operational characteristics of the package in a simulated spacecraft environment. One unit was tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the latter part of 2006. Those test results were reported in a 2007 ICES paper.
X