Refine Your Search

Topic

Author

Search Results

Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Journal Article

A Freezable Heat Exchanger for Space Suit Radiator Systems

2008-06-29
2008-01-2111
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment, the load from the electrical components and incident radiation. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus simple and highly reliable. However, past freezable radiators have been too heavy.
Technical Paper

Neutral Buoyancy Portable Life Support System Performance Study

1991-07-01
911346
A system performance study on a portable life support system being developed for use in the Weightless Environment Training Facility (WETF) and the Neutral Buoyancy Laboratory (NBL) has been completed. The Neutral Buoyancy Portable Life Support System (NBPLSS) will provide life support to suited astronauts training for extravehicular activity (EVA) under water without the use of umbilicals. The basic configuration is characterized by the use of medium pressure (200 - 300 psi) cryogen (liquid nitrogen/oxygen mixture) which provides cooling within the Extravehicular Mobility Unit (EMU), the momentum which enables flow in the vent loop, and oxygen for breathing. NBPLSS performance was analyzed by using a modified Metabolic Man program to compare competing configurations. Maximum sustainable steady state metabolic rates and transient performance based on a typical WETF metabolic rate profile were determined and compared.
Technical Paper

General Motors Full Scale Wind Tunnel Upgrade

2020-04-14
2020-01-0687
The General Motors Aero Lab’s Full-Scale Wind Tunnel Facility, which came into operation in August of 1980[1], has undergone the significant upgrade of installing a state-of-the-art moving ground plane system. After almost four decades of continuous use the full-scale wind tunnel also received some significant maintenance to other areas, including a new heat exchanger, main fan overhaul, and replacement of the test section acoustic treatment. A 5-belt system was installed along with an integrated vehicle lift system. The center belt measures 8.5m long and can accommodate two belt widths of 1100mm and 950mm. Flow quality and other wind tunnel performance parameters were maintained to prior specifications which are on par with the latest industry standards [2]. The new 5-belt rolling road system maintains GM’s industry leading vehicle aerodynamic development and the improved acoustic panels ensure GM continues to develop vehicles with leading class acoustics.
Technical Paper

Development of the Surface Thermal Environment for the Mars Scout Phoenix Mission

2007-07-09
2007-01-3239
Phoenix is NASA's first Mars Scouts Mission that will place a soft-lander on the Martian surface at a high northern latitude. Much of the Mars surface environmental flight data from landed missions pertains to the near-equatorial regions. However, orbital observations have yielded very useful data about the surface environment. These data along with a simple, but highly effective one-dimensional atmospheric model was used to develop the Phoenix surface thermal environment. As candidate landing sites were identified, parametric studies including statistical variations were conducted to prescribe minimum nighttime and maximum daytime temperature design Sols (a Martian day). Atmospheric effects such as clouds and ice were considered. Finally, recent candidate landing site imaging conducted by the Mars Reconnaissance Orbiter revealed that the prime site contained a much higher rock density than first thought.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft

2007-07-09
2007-01-3258
Silver biocide offers a potential advantage over iodine, the current state-of-the-art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. As such, silver may reduce the overall complexity and mass of future spacecraft potable water systems, particularly those used to support long duration missions. A primary technology gap identified for the use of silver biocide is one of material compatibility. Wetted materials of construction are required to be selected such that silver ion concentrations can be maintained at biocidally effective levels.
Technical Paper

Inhibition of Biofilm Formation on the Service and Performance Heat Exchanger by Quorum Sensing Inhibition

2007-07-09
2007-01-3143
Shortly after installation of the service and performance heat exchanger (SPCU HX) in 2001, samples collected from the coolant fluid indicated the presence of nickel accompanied by a subsequent decrease in phosphate concentration along with a high microbial load. When the SPCU HX was replaced and evaluated post-flight, it was expected that the heat exchanger would have significant biofilm and corrosion present given the composition of the coolant fluid; however, there was no evidence of either. Early results from two experiments imply that the heat exchanger materials themselves are inhibiting biofilm formation. This paper discusses the results of one set of experiments and puts forward the inhibition of quorum sensing as a possible mechanism for the lack of biofilm formation.
Technical Paper

Viral Populations within the International Space Station's Internal Active Thermal Control System Ground Support and Potential Flight Hardware

2007-07-09
2007-01-3108
The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) contains an aqueous, alkaline fluid (pH 9.5±0.5) that aids in maintaining a habitable environment for the crew. Because microbes have significant potential to cause disease, adverse effects on astronaut health, and microbe-induced corrosion, the presence of both bacteria and viruses within IATCS fluids is of concern. This study sought to detect and identify viral populations in IATCS samples obtained from the Kennedy Space Center as a first step towards characterizing and understanding potential risks associated with them. Samples were concentrated and viral nucleic acids (NA) extracted providing solutions containing 8.87-22.67 μg NA per mL of heat transfer fluid. After further amplification viral DNA and cDNA were then pooled, fluorescently labeled, and hybridized onto a Combimatrix panvira 12K microarray containing probes for ∼1,000 known human viruses.
Technical Paper

Comparison Studies of Candidate Nutrient Delivery Systems for Plant Cultivation in Space

1997-07-01
972304
A reliable nutrient delivery system is essential for long-term cultivation of plants in space. At the Kennedy Space Center, a series of ground-based tests are being conducted to compare candidate plant nutrient delivery systems for space. To date, our major focus has concentrated on the Porous Tube Plant Nutrient Delivery System, the ASTROCULTURE™ System, and a zeoponic plant growth substrate. The merits of each system are based upon the performance of wheat supported over complete growth cycles. To varying degrees, each system supported wheat biomass production and showed distinct patterns for plant nutrient uptake and water use.
Technical Paper

Demonstration of Oxygen Production on the Moon and Mars

1997-07-01
972498
Scientists and engineers at NASA are currently developing flight instruments which will demonstrate oxygen production on the Moon and Mars. REGA will extract oxygen from the lunar regolith, measure implanted solar wind and indigenous gases, and monitor the lunar atmosphere. MIP will demonstrate oxygen production on Mars, along with key supporting technologies including filtration, atmospheric acquisition and compression, thermal management, solar cell performance, and dust removal.
Technical Paper

Bioregenerative Planetary Life Support Systems Test Complex: Facility Description and Testing Objectives

1997-07-01
972342
As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support facility capable of supporting long-duration testing of integrated bioregenerative life support systems with human test crews. This facility, the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), is currently under development at the Johnson Space Center. The BIO-Plex is comprised of a set of interconnected test chambers with a sealed internal environment capable of supporting test crews of four individuals for periods exceeding one year. The life support systems to be tested will consist of both biological and physicochemical technologies and will perform all required air revitalization, water recovery, biomass production, food processing, solid waste processing, thermal management, and integrated command and control functions.
Technical Paper

Mars Pathfinder Active Heat Rejection System: Successful Flight Demonstration of a Mechanically Pumped Cooling Loop

1998-07-13
981684
One of the new technologies successfully demonstrated on the recent Mars Pathfinder mission was the active Heat Rejection System (HRS). This system consisted of a mechanically pumped cooling loop, which actively controlled the temperatures of the various parts of the spacecraft. A single phase Refrigerant 11 liquid was mechanically circulated through the lander and cruise electronics box heat exchangers. This liquid transferred the excess heat to an external radiator on the cruise stage. This is the first time in unmanned spacecraft history that an active heat rejection system of this type has been used on a long duration spacecraft mission. Pathfinder was launched in December 1996 and landed on the Martian surface on July 4, 1997. The system functioned flawlessly during the entire seven months of flight from Earth to Mars. A life test set up of the cooling loop was used to verify the life of the system.
Technical Paper

Enhanced Performance Evaporative Heat Sinks for Space Applications

1998-07-13
981779
An evaporative heat sink has been designed and built by AlliedSignal for NASA's Johnson Space Center. The unit is a demonstrator of a primary heat exchanger for NASA's prototype Crew Return Vehicle (CRV), designated the X-38. The primary heat exchanger is responsible for rejecting the heat produced by both the flight crew and the avionics. Spacecraft evaporative heat sinks utilize space vacuum as a resource to control the vapor pressure of a liquid. For the X-38, water has been chosen as the heat transport fluid. A portion of this coolant flow is bled off for use as the evaporant. At sufficiently low pressures, the water can be made to boil at temperatures approaching its freezing point. Heat transferred to liquid water in this state will cause the liquid to evaporate, thus creating a heat sink for the spacecraft's coolant loop. The CRV mission requires the heat exchanger to be compact and low in mass.
Technical Paper

On-Orbit Performance of the TES Loop Heat Pipe Heat Rejection System

2008-06-29
2008-01-2000
Launched on NASA's Aura spacecraft on July 15, 2004, JPL's Tropospheric Emission Spectrometer (TES) has been operating successfully for over three years in space. TES is an infrared high resolution, imaging fourier transform spectrometer with spectral coverage of 3.3 to 15.4 μm to measure and profile essentially all infrared-active molecules present in the Earth's lower atmosphere. It measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The Aura spacecraft was successfully placed in a sun-synchronous near-circular polar orbit with a mean altitude of 705 km and 98.9 minute orbit period. The observatory is designed for a nominal 5 year mission lifetime. The instrument thermal design features include four temperature zones needed for efficient cryogenic staging to provide cooling at 65 K, 180 K, 230 K and 300 K.
Technical Paper

Thermal Vacuum Testing of the Moon Mineralogy Mapper Instrument

2008-06-29
2008-01-2037
The Moon Mineralogy Mapper (M3) instrument is scheduled for launch in 2008 onboard the Indian Chandrayaan-1 spacecraft. The mission is managed by the Indian Space Research Organization (ISRO) in Bangalore, India and is India's first flight to the Moon. M3 is being developed for NASA by the Jet Propulsion Laboratory under the Discovery Program Office managed by Marshall Space Flight Center. M3 is a state-of-the-art instrument designed to fulfill science and exploratory objectives. Its primary science objective is to characterize and map the lunar surface composition to better understand its geologic evolution. M3's primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. M3 is a cryogenic near infrared imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

Overview of NASA's Thermal Control System Development for Exploration Project

2009-07-12
2009-01-2436
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project.
Technical Paper

Pulmonary Toxicity of Lunar Highland Dust

2009-07-12
2009-01-2379
Lunar dust exposures occurred during the Apollo missions while the crew was in the lunar module on the moon's surface and especially when micro-gravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes, and in some cases, respiratory symptoms were elicited. NASA's current vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust in the habitat need to be assessed. NASA is performing this assessment with a series of in vitro and in vivo tests with authentic lunar dust. Our approach is to “calibrate” the intrinsic toxicity of lunar dust by comparison to a relatively low toxicity dust (TiO2) and a highly toxic dust (quartz) using intrapharyngeal instillation of the dusts to mice. A battery of indices of toxicity is assessed at various time points after the instillations.
Technical Paper

Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

2009-07-12
2009-01-2401
Recovery of potable water from wastewater is essential to the success of long-duration human missions to the moon and Mars. Honeywell International and a team from the NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, which is referred to as the cascade distillation subsystem (CDS), uses an efficient multistage thermodynamic process to produce purified water. A CDS unit employing a five-stage distiller engine was designed, built, and delivered to the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing; an initial round of testing was completed in fiscal year 2008 (FY08). Based, in part, on FY08 testing, the system is now in development to support an Exploration Life Support Project distillation comparison test that is expected to begin in 2009.
X