Refine Your Search

Topic

Author

Search Results

Journal Article

Design Description and Initial Characterization Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

2009-07-12
2009-01-2419
NASA's proposed lunar lander, Altair, will be exposed to vastly different external temperatures following launch till its final destination on the moon. In addition, the heat rejection is lowest at the lowest environmental temperatures (0.5 kW @ 4K) and highest at the highest environmental temperature (4.5 kW @ 215K). This places a severe demand on the radiator design to handle these extreme turn-down requirements. A radiator with digital turn-down capability is currently under study at JPL as a robust means to meet the heat rejection demands and provide freeze protection while minimizing mass and power consumption. Turndown is achieved by independent control of flow branches with isolating latch valves and a gear pump to evacuate the isolated branches. A bench-top test was conducted to characterize the digital radiator concept. Testing focused on the demonstration of proper valve sequencing to achieve turn-down and recharge of flow legs.
Journal Article

Start-Up Characteristics and Gravity Effects on a Medium/High-Lift Heat Pump using Advanced Hybrid Loop Technology

2008-06-29
2008-01-1959
Thermal characterization was performed on a vapor compression heat pump using a novel, hybrid two phase loop design. Previous work on this technology has demonstrated its ability to provide passive phase separation and flow control based on capillary action. This provides high quality vapor to the compressor without relying on gravity-based phase separation or other active devices. This paper describes the subsequent work done to characterize evaporator performance under various startup scenarios, tilt angles, and heat loads. The use of a thermal expansion valve as a method to regulate operation was investigated. The effect of past history of use on startup behavior was also studied. Testing under various tilt angles showed evaporator performance to be affected by both adverse and favorable tilts for the given compressor. And depending on the distribution of liquid in the system upon startup, markedly different performance can result for the same system settings and heat loads.
Technical Paper

Development of the Surface Thermal Environment for the Mars Scout Phoenix Mission

2007-07-09
2007-01-3239
Phoenix is NASA's first Mars Scouts Mission that will place a soft-lander on the Martian surface at a high northern latitude. Much of the Mars surface environmental flight data from landed missions pertains to the near-equatorial regions. However, orbital observations have yielded very useful data about the surface environment. These data along with a simple, but highly effective one-dimensional atmospheric model was used to develop the Phoenix surface thermal environment. As candidate landing sites were identified, parametric studies including statistical variations were conducted to prescribe minimum nighttime and maximum daytime temperature design Sols (a Martian day). Atmospheric effects such as clouds and ice were considered. Finally, recent candidate landing site imaging conducted by the Mars Reconnaissance Orbiter revealed that the prime site contained a much higher rock density than first thought.
Technical Paper

Overview of Potable Water Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

2007-07-09
2007-01-3259
Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions, questions, and recommendations on strategies that could be applied to CEV based on previous spacecraft water system lessons learned will be made.
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft

2007-07-09
2007-01-3258
Silver biocide offers a potential advantage over iodine, the current state-of-the-art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. As such, silver may reduce the overall complexity and mass of future spacecraft potable water systems, particularly those used to support long duration missions. A primary technology gap identified for the use of silver biocide is one of material compatibility. Wetted materials of construction are required to be selected such that silver ion concentrations can be maintained at biocidally effective levels.
Technical Paper

Comparison Studies of Candidate Nutrient Delivery Systems for Plant Cultivation in Space

1997-07-01
972304
A reliable nutrient delivery system is essential for long-term cultivation of plants in space. At the Kennedy Space Center, a series of ground-based tests are being conducted to compare candidate plant nutrient delivery systems for space. To date, our major focus has concentrated on the Porous Tube Plant Nutrient Delivery System, the ASTROCULTURE™ System, and a zeoponic plant growth substrate. The merits of each system are based upon the performance of wheat supported over complete growth cycles. To varying degrees, each system supported wheat biomass production and showed distinct patterns for plant nutrient uptake and water use.
Technical Paper

Proof of Concept High Lift Heat Pump for a Lunar Base

1998-07-13
981683
When a permanent human outpost is established on the Moon, various methods may be used to reject the heat generated by the base. One proposed concept is the use of a heat pump operating with a vertical, flow-through thermal radiator mounted on a Space Station type habitation module [1]. Since the temperature of the lunar surface varies over the day, the vertical radiator sink temperatures can reach much higher levels than the comfort and even survivability requirements of a habitation module. A high temperature lift heat pump will not only maintain a comfortable habitation module temperature, but will also decrease the size of the radiators needed to reject the waste heat. Thus, the heat pump will also decrease the mass of the entire thermal system. Engineers at the Johnson Space Center (JSC) have tested a High Lift Heat Pump design and are developing the next generation heat pump based on information and experience gained from this testing.
Technical Paper

On-Orbit Performance of the TES Loop Heat Pipe Heat Rejection System

2008-06-29
2008-01-2000
Launched on NASA's Aura spacecraft on July 15, 2004, JPL's Tropospheric Emission Spectrometer (TES) has been operating successfully for over three years in space. TES is an infrared high resolution, imaging fourier transform spectrometer with spectral coverage of 3.3 to 15.4 μm to measure and profile essentially all infrared-active molecules present in the Earth's lower atmosphere. It measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The Aura spacecraft was successfully placed in a sun-synchronous near-circular polar orbit with a mean altitude of 705 km and 98.9 minute orbit period. The observatory is designed for a nominal 5 year mission lifetime. The instrument thermal design features include four temperature zones needed for efficient cryogenic staging to provide cooling at 65 K, 180 K, 230 K and 300 K.
Technical Paper

Thermal Vacuum Testing of the Moon Mineralogy Mapper Instrument

2008-06-29
2008-01-2037
The Moon Mineralogy Mapper (M3) instrument is scheduled for launch in 2008 onboard the Indian Chandrayaan-1 spacecraft. The mission is managed by the Indian Space Research Organization (ISRO) in Bangalore, India and is India's first flight to the Moon. M3 is being developed for NASA by the Jet Propulsion Laboratory under the Discovery Program Office managed by Marshall Space Flight Center. M3 is a state-of-the-art instrument designed to fulfill science and exploratory objectives. Its primary science objective is to characterize and map the lunar surface composition to better understand its geologic evolution. M3's primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. M3 is a cryogenic near infrared imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

Lightweight, Flexible, and Freezable Heat Pump/Radiator for EVA Suits

2008-06-29
2008-01-2112
We have completed preliminary tests that show the feasibility of an innovative concept for a spacesuit thermal control system using a lightweight, flexible heat pump/radiator. The heat pump/radiator is part of a regenerable LiCI/water absorption cooling device that absorbs an astronaut's metabolic heat and rejects it to the environment via thermal radiation at a relatively high temperature. We identified key design specifications for the system, demonstrated that it is feasible to fabricate the flexible radiator, measured the heat rejection capability of the radiator, and assessed the effects on overall mass of the PLSS. We specified system design features that will enable the flexible absorber/radiator to operate in a wide range of space exploration environments. The materials used to fabricate the flexible absorber/radiator samples were all found to be low off-gassing and many have already been qualified for use in space.
Technical Paper

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-06-29
2008-01-2101
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft, but additional data was needed on the operational characteristics of the package in a simulated spacecraft environment. One unit was tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the latter part of 2006. Those test results were reported in a 2007 ICES paper.
Technical Paper

Testing and Model Correlation of Sublimator Driven Coldplate Coupons and EDU

2009-07-12
2009-01-2479
The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a more traditional thermal control system. The principal advantage is the possible elimination of a pumped fluid loop, potentially saving mass, power, and complexity. Because this concept relies on evaporative heat rejection techniques, it is primarily useful for short mission durations. Additionally, the concept requires a conductive path between the heat-generating component and the heat rejection device. Therefore, it is mostly a relevant solution for a vehicle with a relatively low heat rejection requirement and/or short transport distances. Tests were performed on coupons and an Engineering Development Unit (EDU) at NASA's Johnson Space Center to better understand the basic operational principles and to validate the analytical methods being used for the SDC development.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Pulmonary Toxicity of Lunar Highland Dust

2009-07-12
2009-01-2379
Lunar dust exposures occurred during the Apollo missions while the crew was in the lunar module on the moon's surface and especially when micro-gravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes, and in some cases, respiratory symptoms were elicited. NASA's current vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust in the habitat need to be assessed. NASA is performing this assessment with a series of in vitro and in vivo tests with authentic lunar dust. Our approach is to “calibrate” the intrinsic toxicity of lunar dust by comparison to a relatively low toxicity dust (TiO2) and a highly toxic dust (quartz) using intrapharyngeal instillation of the dusts to mice. A battery of indices of toxicity is assessed at various time points after the instillations.
Technical Paper

A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

2009-07-12
2009-01-2537
In the design of a new space suit it is necessary to have requirements that define what mobility space suit joints should be capable of achieving in both a system and at the component level. NASA elected to divide mobility into its constituent parts -- range of motion (ROM) and torque -- in an effort to develop clean design requirements that limit subject performance bias and are easily verified. Unfortunately, the measurement of mobility can be difficult to obtain. Current technologies, such as the Vicon motion capture system, allow for the relatively easy benchmarking of range of motion (ROM) for a wide array of space suit systems. The ROM evaluations require subjects in the suit to accurately evaluate the ranges humans can achieve in the suit. However, when it comes to torque, there are significant challenges for both benchmarking current performance and writing requirements for future suits.
Technical Paper

Solar Proton Event Observations at Mars with MARIE

2003-07-07
2003-01-2329
The 2001 Mars Odyssey spacecraft Martian Radiation Environment Experiment (MARIE) is a solid-state silicon telescope high-energy particle detector designed to measure galactic cosmic radiation (GCR) and solar particle events (SPEs) in the 20 – 500 MeV/nucleon energy range. In this paper we discuss the instrument design and focus on the observations and measurements of SPEs at Mars. These are the first-ever SPE measurements at Mars. The measurements are compared with the geostationary GOES satellite SPE measurements. We also discuss some of the current interplanetary particle propagation and diffusion theories and models. The MARIE SPE measurements are compared with these existing models.
Technical Paper

Mechanical Properties and Durability Study of Aerogel-Base Thermal Insulation for Advanced Space Suit

2003-07-07
2003-01-2446
Fiber-reinforced Aerogel composite insulations provide superior thermal insulation protection in both the low-earth orbit (LEO) and near-earth neighborhood planetary environments. The flexible nature and thermal properties of these materials make them the best insulation candidates for advanced space suit application. This paper reviews the properties of various Aerogel composite materials developed for NASA by Aspen Systems, Inc. Previous studies showed that the Aerogel materials retained acceptable thermal performance after some amount of mechanical cycling. The goal of the current work is to reach a complete understanding of the mechanical properties of these materials in the domain of space suit application. Hence, a good knowledge of the durability of the aerogel composites is needed. This paper presents the extensive testing program needed to determine the life of these insulations for advanced space suit application.
Technical Paper

Mid-IR Semiconductor Lasers for Chemical Sensing

2003-07-07
2003-01-2551
The development of mid-IR semiconductor diode lasers based on type-II interband cascade structures is presented. How these diode lasers can be developed to meet the requirements in chemical sensing applications is discussed.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

2003-07-07
2003-01-2688
A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
X