Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

In-Cylinder Temperature Measurements Using Laser Induced Grating Spectroscopy and Two-Colour PLIF

2017-09-04
2017-24-0045
In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation by measurement of the in-cylinder temperature distribution during the compression stroke. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0 % when the gas composition is well characterized and homogeneous; as the pressure increases the precision improves.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Technical Paper

Spray Behaviour and Particulate Matter Emissions with M15 Methanol/Gasoline Blends in a GDI Engine

2016-04-05
2016-01-0991
Model M15 gasoline fuels have been created from pure fuel components, to give independent control of volatility, the heavy end content and the aromatic content, in order to understand the effect of the fuel properties on Gasoline Direct Injection (GDI) fuel spray behaviour and the subsequent particulate number emissions. Each fuel was imaged at a range of fuel temperatures in a spray rig and in a motored optical engine, to cover the full range from non-flashing sprays through to flare flashing sprays. The spray axial penetration (and potential piston and liner impingement), and spray evaporation rate were extracted from the images. Firing engine tests with the fuels with the same fuel temperatures were performed and exhaust particulate number spectra captured using a DMS500 Mark II Particle Spectrometer.
Technical Paper

Multi-Plane PIV using Depth of Field for In-cylinder Flow Measurements

2023-04-11
2023-01-0213
Extending the planar Particle Image Velocimetry (PIV) technique to enable measurements on multiple planes simultaneously allows for some of the 3 dimensional nature of unsteady flow fields to be investigated. This requires less hardware and retains the typically higher spatial resolution of planar PIV compared to fully 3-dimensional PIV techniques. Performing multi-plane PIV measurements requires the light scattered from the different measurement planes to be distinguishable. This may be achieved by using different laser wavelengths which adds significantly to the expense and complexity of the system, by using different light sheet polarisations which is challenging for engine measurements through windows due to stress-induced birefringence, or by making alternating measurements of each plane which sacrifices the simultaneity of the flow measurement across multiple planes.
Technical Paper

An Experimental Method to Test Twin and Double Entry Automotive Turbines in Realistic Engine Pulse Conditions

2019-04-02
2019-01-0319
In a context of increasing emission regulations, turbocharged gasoline engines are increasingly present in the automotive industry. In particular, the twin-entry and double-entry radial inflow turbines are widespread used technologies to avoid interferences between exhaust process of consecutive firing order cylinders. In this study, a passenger car twin-entry type turbine has been tested under highly pulsating flow conditions by means of a specifically built gas stand, trying to perform pulses with similar features as the ones that can be found in a real reciprocating engine. For this purpose, the turbine has been instrumented with multiple pressure, temperature and mass flow sensors, using a uniquely designed rotating valve for generating the pulses. The test bench setup is flexible enough to perform pulses in both inlet branches separately as well as to use hot or ambient conditions with minimal changes in the installation.
Technical Paper

Evaluation of Camshaft Control Strategies for a GDI Engine using a Multidisciplinary Optimisation Framework

2014-10-13
2014-01-2581
This paper presents a calibration optimization study for a Gasoline Direct Injection engine based on a multidisciplinary design optimization (MDO) framework. The paper presents the experimental framework used for the GDI engine mapping, followed by an analysis of the calibration optimization problem. The merits of the MDO approach to calibration optimization are discussed in comparison with a conventional two-stage approach based on local trade-off optimization analysis, focused on a representative emissions drive cycle (NEDC) and limited part load engine operation. The benefits from using the MDO optimisation framework are further illustrated with a study of relative effectiveness of different camshaft timing control strategies (twin independent Versus fixed timing, exhaust only, inlet only and fixed overlap / dual equal) for the reference GDI engine based on the part load test data.
Technical Paper

Set-Up and Validation of an Integrated Engine Thermal Model in GT-SUITE for Heat Rejection Prediction

2019-09-09
2019-24-0078
Current approaches to heat rejection prediction during the development stage of a new engine are mostly based on maps built upon experimental data. However, these maps can be obtained fairly late in the development process, when at least a prototype of the engine can be run on the test bench. Furthermore, such experimental maps are limited to a discrete number of points measured at fixed operating conditions. An innovative approach based on 1D simulation was tested in the commercial 1D multi-physics code GT-SUITE, developed by Gamma Technologies LLC, to advance the moment at which reliable heat rejection calculations can be effectively used to support the engine and cooling system design. A fully physical Diesel engine performance model - featuring a predictive combustion model - was integrated with a detailed finite element wall temperature solver based on the 3D meshing feature available in GT-SUITE.
Technical Paper

An Optical Analysis of a DISI Engine Cold Start-Up Strategy

2015-09-01
2015-01-1877
Particulate number (PN) standards in the current ‘Euro 6’ European emissions standards pose a challenge for engine designers and calibrators during the warm-up phases of cold direct injection spark ignition (DISI) engines. To achieve catalyst light-off in the shortest time, engine strategies are often employed which inherently use more fuel to attain higher exhaust temperatures. This can lead to the generation of locally fuel-rich regions within the combustion chamber and the emission of particulates. This investigation analyses the combustion structures during the transient start-up phase of an optical DISI engine. High-speed, colour 9 kHz imaging was used to investigate five important operating points of an engine start-up strategy whilst simultaneously recording in-cylinder pressure.
Technical Paper

Material Modelling of Lamination Stack in Electric Machines

2024-04-09
2024-01-2745
The rotor and stator of electric motors consist of multiple materials, of which steel forms the majority of mass and volume. Steel in electric motors is commonly in the form of thin sheets (laminations), stacked along the axis of the rotor. The structural integrity of such a stack can be ensured using bolting, welding or bonding of the laminations. Predictive mechanical finite element simulations of these laminated stacks can become computationally intense because the steel sheets are thin, and the motor often contains hundreds of them. If the laminations are modelled individually, the size of the elements is very small compared to the overall dimensions and the interface between the laminations need to be modelled as well. In this paper, we present an alternate method of modelling this laminated stack as a single solid body using homogeneous and orthotropic material property, instead of representing each lamination.
X