Refine Your Search

Topic

Author

Search Results

Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

2015-11-17
2015-32-0771
One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles II

2007-07-23
2007-01-2039
JCAPII gasoline workgroup reported vehicle emission study to comprehend the impact of ETBE blending. In previous study, we focused on the compatibility of ETBE blended gasoline with Japanese current gasoline vehicles in-use. Based on recent discussion with ETBE 8% blended gasoline into the market, more information becomes necessary. In this second report, we studied to comprehend the actual emission impact using realistic model fuels using several base stocks. Fuel properties of T50, T90 and aromatic compound content were selected through discussions. Specifications were changed within the range of the market. Both ETBE 0% and 8% were combined for these fuel matrixes. In total, eight fuels and two reference fuels were tested. Two J-ULEV vehicles (one MPI, and a stoichiometric-SIDI) were procured as representatives. We discussed quantitative and qualitative impact toward emissions. Data regarding CO2 and fuel economy change were also reported.
Technical Paper

Results of JCAP I Studies and Outline of JCAP II Program

2003-05-19
2003-01-1902
A program with title of “Development of automobile and fuel technologies for air quality improvement (Japan Clean Air Program - abbreviated to JCAP) has been conducted as a five-year program. Under the program, an influence of fuel quality on automobile technology has been evaluated, and effect of air quality improvement due to implementation of automobile exhaust emission regulations has also been evaluated by using air quality models. Through the five years of JCAP activities from FY 1997 to FY 2001, following items have been evaluated: an influence of fuel properties and automobile exhaust emission reduction technologies, an evaluation of aftertreatment devices equipped on in-use vehicles, a detailed analysis of fuel properties and exhaust emissions, a prediction of air quality improvement effects due to the implementation of next stage stringent automobile exhaust emission regulations.
Technical Paper

Estimating Ozone Potential of Pipe-out Emissions from Euro-3 to Euro-5 Passenger Cars Fueled with Gasoline, Alcohol-Gasoline, Methanol and Compressed Natural Gas

2016-04-05
2016-01-1009
Along with the booming expansion of private car preservation, many Chinese cities are now struggling with hazy weather and ground-level ozone contamination. Although central government has stepped up efforts to purify skies above China, counter-strategies to curb ground-level ozone is comparatively weak. By using maximum incremental reactivity (MIR) method, this paper estimated the ozone forming potential for twenty-five Euro-3 to Euro-5 passenger cars burning conventional gasoline, methanol-gasoline, ethanol-gasoline, neat methanol and compressed natural gas (CNG). The results showed that, for all the fuel tested, VOC/NOx ratios and SR values decreased with the upgrading of emission standard. Except for Euro-3 M100 and Euro-4 M85, SR values for alternative fuel were to different degrees smaller than those for gasoline. When the emission standard was shifted from Euro-4 to Euro-5, OFP values estimated for gasoline vehicle decreased.
Technical Paper

Steric Effects on Tribochemical Reactivity in Detergent-Containing Lubricants under Nanoconfinement

2017-10-08
2017-01-2347
Modern formulation in a wide variety of lubricants including engine oils and transmission fluids is designed to control friction through film-forming tribochemical reactions induced by the functional additives mixtures. Although many cases on the synergistic or antagonistic effects of additives on friction have been reported, their mechanisms are poorly understood. This study focused on the influences of metallic detergents on tribochemical reactions. We examined the mechanical properties of detergent-containing lubricants confined at a single-asperity contact and their contributions to tribochemical phenomena. We found that detergents enlarged the confinement space required for generating repulsive force and shear resistance. This means that these detergents provide steric effects under nanoconfinement at interfacial contacts.
Technical Paper

Effect of Ethanol Addition on Soot Formation of Gasoline in Laminar Diffusion Flames

2017-10-08
2017-01-2396
Soot emission, known as PM (particulate matter), is becoming a big issue for GDI engines as the emission regulations being increasingly stricter. It is found that ethanol, as an oxygenated bio-fuel, can reduce the soot emission when added to gasoline. In order to fully understand the effect of ethanol on soot reducing, the soot characteristics of ethanol/gasoline blends were studied on laminar diffusion flames. In this experiment, the blending ratio of ethanol/gasoline was set as E0/20/40/60/80. Considering the carbon content decreasing due to ethanol addition, carbon mass flow rate was remained constant. The two-dimensional distributions of soot volume fraction were measured quantitatively by using two-color laser induced incandescence technique. The results showed that ethanol is able to decrease the soot significantly, but the effect of ethanol on soot reduction is weakened with the increasing ethanol ratio.
Technical Paper

Prediction of Structural Acoustic Radiation for Compressor Considering Airflow Pulsed Load

2011-05-17
2011-01-1722
A coupled vibro-acoustic of a compressor modeling process was demonstrated for predicting the acoustic radiation from a vibrating compressor structure based on dynamic response data. FEM based modal analysis of the compressor was performed and the result was compared with experimental data, for the purpose of validating the FE model. Modal based force response analysis was conducted to calculate the compressor's surface vibration velocity on radiating structure, using the load which caused by mechanical excitation as input data. In addition, due to the coolant had oscillating gas pressure, the gas pulsed load was also considered during the dynamic response analysis. The surface vibration velocity solution of the compressor provided the necessary boundary condition input into a finite element/boundary element acoustic code for predicting acoustic radiation.
Technical Paper

Investigations of the impact of 10% ethanol blended fuels on performances of sold gasoline vehicles in the Japanese market already on the road in Japan

2011-08-30
2011-01-1987
The study of 10% ethanol blended gasoline (E10 gasoline) utilization has been conducted in the Japan Auto-Oil Program (JATOP). In order to clarify the impact of E10 gasoline on vehicle performances, exhaust emissions, evaporative emissions, driveability and material compatibility have been investigated by using domestic gasoline vehicles including mini motor vehicles which are particular to Japan. The test results reveal that E10 gasoline has no impact on exhaust emissions, engine startup time and acceleration period under the hot start condition, but a slight deterioration is observed in some test cases under the cold start condition using E10 gasolines with 50% distillation temperature (T50) level set to the upper limit of Japanese Industrial Standards (JIS) K 2202. Regarding evaporative emissions, the tested vehicles shows no remarkable increase in the hot soak loss (HSL), diurnal breathing loss (DBL) and running loss (RL) testing with E10 gasolines.
Technical Paper

Proceedings of Real Driving Emission (RDE) Measurement in China

2018-04-03
2018-01-0653
Light-duty China-6, which is among the most stringent vehicle exhaust emission standards globally, mandates the monitoring and reporting of real driving emissions (RDE) from July, 2023. In the process of regulation promulgation and verification, more than 300 RDE tests have been performed on over 50 China-5 and China-6 certified models. This technical paper endeavors to summarize the experience of RDE practice in China, and discuss the impacts of some boundary conditions (including vehicle dynamic parameters, data processing methods, hybrid propulsion and testing altitude) on the result of RDE measurement. In general, gasoline passenger cars confront few challenges to meet the upcoming RDE NOx requirement, but some China-5 certified samples, even powered by naturally-aspirated engines may have PN issues. PN emissions from some GDI-hybrid powertrain systems also need further reduction to meet China-6 RDE requirements.
Technical Paper

Fire Safety Evaluation of a Vehicle Equipped with Hydrogen Fuel Cylinders: Comparison with Gasoline and CNG Vehicles

2006-04-03
2006-01-0129
In this study, we evaluated the fire safety of vehicles that use compressed hydrogen as fuel. We conducted fire tests on vehicles that used compressed hydrogen and on vehicles that used compressed natural gas and gasoline and compared temperatures around the vehicle and cylinder, internal pressure of the cylinder, irradiant heat around the vehicle, sound pressure levels when the pressure relief device (PRD) was activated, and damage to the vehicle and surrounding flammable objects. The results revealed that vehicles equipped with compressed hydrogen gas cylinders are not more dangerous than CNC or gasoline vehicles, even in the event of a vehicle fire.
Technical Paper

Effect of Properties and Additives of Gasoline on Low-Speed Pre-Ignition in Turbocharged Engines

2022-08-30
2022-01-1077
Gasoline-related factors that affect low-speed pre-ignition (LSPI) include the distillation properties of gasoline, manganese (Mn), ethanol, diesel fuel, detergent for aftermarket, and iron (Fe). The combined effect of Mn with ethanol or high calcium engine oil (high-Ca oil) has not been sufficiently clarified. Therefore, appropriate countermeasures for LSPI have not yet been implemented. To clarify the effect of the gasoline properties and additives on LSPI, engine tests were conducted using gasoline with different “PM Index” values, an indicator of distillation properties, different concentrations of Mn, ethanol, diesel fuel, detergent, Fe, and high-Ca oil. The results showed that the LSPI frequency tended to increase with the PM Index, Mn up to 60 ppm, diesel fuel up to 2 vol.%, and detergent up to three times the standard amount.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles

2006-10-16
2006-01-3381
Clarifying the impact of ETBE 8% blended fuel on current Japanese gasoline vehicles, under the Japan Clean Air Program II (JCAPII) we conducted exhaust emission tests, evaporative emission tests, durability tests on the exhaust after-treatment system, cold starting tests, and material immersion tests. ETBE 17% blended fuel was also investigated as a reference. The regulated exhaust emissions (CO, HC, and NOx) didn't increase with any increase of ETBE content in the fuel. In durability tests, no noticeable increase of exhaust emission after 40,000km was observed. In evaporative emissions tests, HSL (Hot Soak Loss) and DBL (Diurnal Breathing Loss) didn't increase. In cold starting tests, duration of cranking using ETBE 8% fuel was similar to that of ETBE 0%. In the material immersion tests, no influence of ETBE on these material properties was observed.
Technical Paper

Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames

2018-04-03
2018-01-0357
Particulate matter emissions are becoming a big issue for GDI engines as the emission regulations being more stringent. Methanol has been considered to be an important alternative fuel to reduce soot emissions. To understand the effect of methanol addition on soot and polycyclic aromatic hydrocarbons (PAHs) formation, the 2-D distributions of soot volume fraction and different size PAHs relative concentrations in methanol/gasoline laminar diffusion flames were measured by TC-LII and PLIF techniques. The effect of methanol was investigated under the conditions of the same carbon flow and the same flame height. The methanol volume fraction was set as M0/20/40/60/80. The results showed that the natural luminescent flame lift-off height and soot lift-off height increases consistently with the increasing methanol content due to the increase of outlet velocity of fuel vapor.
Technical Paper

Research on Low-Friction Properties of High Viscosity Index Petroleum Base Stock and Development of Upgraded Engine Oil

1995-02-01
951036
High viscosity index(HVI) petroleum base stock, with excellent temperature-viscosity characteristics, oxidation resistance, and low-evaporation properties, offers advantages as the base stock for high fuel economy engine oils, particularly because of its low-friction properties in the boundary and/or “E.H.L (Elastohydrodynamic Lubrication)” area due to its rheological characteristics. This research evaluated HVI base stock's low-friction properties. Upgrading the oil from 5W-30 to 5W-20 was also investigated. The friction properties of the HVI base stock were measured by a unit friction platform. The results show a 28% reduction in friction coefficient compared with the conventional, solvent refined oil, which is attributable to the high-pressure viscosity of the base oil.
Technical Paper

Evaluation of the Effect of Fuel Composition and Gasoline Additives on Combustion Chamber Deposits

1996-10-01
962012
Since 1992 some vehicles have experienced engine knock or rapping noise during cold starts that is caused by combustion chamber deposit interference (CCDI) To better understand the CCDI phenomena, engine dynamometer studies were conducted. Results show that base gasoline composition and detergent additive compositions have significant effects on combustion chamber deposit (CCD) build-up In addition to engine testing, thermogravimetric analysis (TGA) was used to determine a correlation between unwashed gum and CCD levels
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
Technical Paper

Effect of Alcohol Fuels on Fuel-Line Materials of Gasoline Vehicles

2005-10-24
2005-01-3708
In 1999, some Japanese fuel suppliers sold highly concentrated alcohol fuels, which are mixtures of gasoline and oxygenates, such as alcohol or ether, in amounts of 50% or more. In August 2001, it was reported that some vehicle models using the highly concentrated alcohol fuels encountered fuel leakage and vehicle fires due to corrosion of the aluminum used for the fuel-system parts. The Ministry of Economy, Trade and Industry (METI) and the Ministry of Land, Infrastructure and Transport Government of Japan (MLIT) jointly established the committee on safety for highly concentrated alcohol fuels in September 2001. The committee consisted of automotive technology and metal corrosion experts knowledgeable about preventing such accidents and ensuring user safety. Immersion tests were conducted on metals and other materials used for the fuel-supply system parts to determine the corrosion resistance to each alcohol component contained in the highly concentrated alcohol fuels.
Technical Paper

Analysis of Low Concentration Aldehyde and Ketone Compounds in Automotive Exhaust Gas by New Collection Reagent.

2005-05-11
2005-01-2152
Acidified 2,4-dinitrophenylhydrazine (DNPH) solution, or DNPH-impregnated cartridges are commonly used for the collection of automotive exhaust carbonyl compounds. There are some DNPH-carbonyl compounds in not in use DNPH cartridges and DNPH solution. Furthermore, concentrations of automotive exhaust carbonyl compounds are decreasing according to improvement of the purification technology for automotive exhaust. Automotive exhaust carbonyl compounds become to be difficult to be analyzed with DNPH collection method, because of these two reasons. It is thought that reliable analysis of acrolein in automotive exhaust is very difficult because concentration of DNPH-acrolein in extracted solution is not stable. Furthermore, it is found out that DNPH-acrolein in DNPH-cartridge is disappeared for short time storage in this research.
Technical Paper

Application of a Mini-Dilution Tube in the Study of Fuel Effects on Stratified Charge Engine Emissions and Combustion

1981-10-01
811198
A mini-dilution tube to measure particulate emissions is described and results obtained in an application are presented. The application selected is a study of fuel effects on stratified charge engine emission and combustion characteristics. The mini-dilution tube was developed to provide a capability for particulate measurements with dynamometer engines. The device has been demonstrated to yield particulate mass results agreeing to within 10 percent of those with a full scale tunnel in steady state tests with diesel powered vehicles. A PROCO engine modified by incorporation of Torch Ignition was used in the study. Fuels were a wide cut gasoline, methanol and Indolene Clear gasoline. The engine was operated at a speed of 1250 rpm with an indicated mean effective pressure of 390 kPa. Spark timing, injection timing, EGR and equivalence ratio were varied.
X