Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Journal Article

Modal Based Rotating Disc Model for Disc Brake Squeal

2015-04-14
2015-01-0665
Modelling of disc in brake squeal analysis is complicated because of the rotation of disc and the sliding contact between disc and pads. Many analytical or analytical numerical combined modeling methods have been developed considering the disc brake vibration and squeal as a moving load problem. Yet in the most common used complex eigenvalue analysis method, the moving load nature normally has been ignored. In this paper, a new modelling method for rotating disc from the point of view of modal is presented. First finite element model of stationary disc is built and modal parameters are calculated. Then the dynamic response of rotating disc which is excited and observed at spatial fixed positions is studied. The frequency response function is derived through space and time transformations. The equivalent modal parameter is extracted and expressed as the function of rotation speed and original stationary status modal parameters.
Journal Article

On the Coupling Stiffness in Closed-Loop Coupling Disc Brake Model through Optimization

2015-04-14
2015-01-0668
The study and prevention of unstable vibration is a challenging task for vehicle industry. Improving predicting accuracy of braking squeal model is of great concern. Closed-loop coupling disc brake model is widely used in complex eigenvalue analysis and further analysis. The coupling stiffness of disc rotor and pads is one of the most important parameters in the model. But in most studies the stiffness is calculated by simple static force-deformation simulation. In this paper, a closed-loop coupling disc brake model is built. Initial values of coupling stiffness are estimated from static calculation. Experiment modal analysis of stationary disc brake system with brake line pressure and brake torques applied is conducted. Then an optimization process is initiated to minimize the differences between modal frequencies predicted by the stationary model and those from test. Thus model parameters more close to reality are found.
Technical Paper

Research on High-efficiency Test Method of Vehicle AEB based on High-precision Detection of Radar Turntable Encoder

2021-10-11
2021-01-1273
With the increasingly complex traffic environment, the vehicle AEB system needs to go through a large number of testing processes, in order to drive more safely on the road. For speeding up the development process of AEB and solve the problems of long cycle, high cost and low efficiency in AEB testing, in this paper, a millimeter wave radar turntable is built, and a high-precision detection algorithm of turntable encoder is designed, at the same time, a test method of vehicle AEB based on the detection data of radar turntable encoder is designed. The verification results show that methods described in this paper can be used to develop the vehicle AEB test algorithm efficiently.
Technical Paper

Parameter Matching of Planetary Gearset Characteristic Parameter of Power-Spilt Hybrid Vehicle

2021-09-16
2021-01-5088
To quickly and efficiently match the planetary gearset characteristic parameter of power-spilt hybrid vehicles so that their oil-saving potential can be maximized, this study proposes a parameter matching method that comprehensively considers energy management strategy and driving cycle based on an analysis of vehicle instantaneous efficiency. The method is used to match the planetary characteristic parameter of a power-split hybrid light truck. The relevant conclusions are compared with the influence of various planetary characteristic parameters on fuel consumption obtained through simulation under typical operating conditions. The simulation results show that the influence laws of the various planetary characteristic parameters on vehicle average efficiency are similar to those on fuel consumption. The proposed parameter-matching method based on vehicle efficiency analysis can effectively match the planetary characteristic parameter for power-split hybrid powertrains.
Technical Paper

Evolution and Future Development of Vehicle Fuel Specification in China

2021-09-21
2021-01-1201
Fuel quality has a significant influence on the combustion engine operation. In recent years the increasing concerns about environmental protection, energy saving, energy security and the requirements of protecting fuel injection and aftertreatment systems have been major driving forces for the Chinese fuel specification evolution. The major property changes in the evolution of Chinese national gasoline and diesel standards are introduced and the reasons behind these changes are analyzed in this paper. The gasoline fuel development from State I to State VI-B involved a decrease of sulfur, manganese, olefins, aromatics and benzene content. The diesel fuel quality improvement from State I to State VI included achieving low sulfur fuels and a cetane number (CN) increase. Provincial fuel standards, stricter than corresponding national standards, were implemented in economically developed areas in the past.
Technical Paper

Short-Term Vehicle Speed Prediction Based on Back Propagation Neural Network

2021-08-10
2021-01-5081
In the face of energy and environmental problems, how to improve the economy of fuel cell vehicles (FCV) effectively and develop intelligent algorithms with higher hydrogen-saving potential are the focus and difficulties of current research. Based on the Toyota Mirai FCV, this paper focuses on the short-term speed prediction algorithm based on the back propagation neural network (BP-NN) and carries out the research on the short-term speed prediction algorithm based on BP-NN. The definition of NN and the basic structure of the neural model are introduced briefly, and the training process of BP-NN is expounded in detail through formula derivation. On this basis, the speed prediction model based on BP-NN is proposed. After that, the parameters of the vehicle speed prediction model, the characteristic parameters of the working condition, and the input and output neurons are selected to determine the topology of the vehicle speed prediction model.
Technical Paper

Parametric Investigation of Two-Stage Pilot Diesel Injection on the Combustion and Emissions of a Pilot Diesel Compression Ignition Natural Gas Engine at Low Load

2020-06-23
2020-01-5056
The purpose of this study is to evaluate the impact of two-stage pilot injection parameters on the combustion and emissions of pilot diesel compression ignition natural gas (CING) engine at low load. Experiments were performed using a diesel/natural gas dual-fuel engine, which was modified from a six-cylinder diesel engine. The effect of injection timing and injection pressure of two-stage pilot diesel were analyzed in order to reduce both the fuel consumption and total hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. The results indicate that, because injection timing can determine the degree of pilot diesel stratification, in-cylinder thermodynamic state, and the available mixing time prior to the combustion, the combustion process can be controlled and optimized through adjusting injection timing.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

Design and Power-Assisted Braking Control of a Novel Electromechanical Brake Booster

2018-04-03
2018-01-0762
As a novel assist actuator of brake system, the electromechanical brake (EMB) booster has played a significant role in the battery electric vehicles and automatic driving vehicles. It has advantages of independent to vacuum source, active braking, and tuning pedal feeling compared with conventional vacuum brake booster. In this article, a novel EMB booster system is proposed, which is consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction by gears and ball screw, a servo body, and a reaction disk. Together with the hydraulic control unit, it has two working modes: active braking for automatic drive and passive braking for driver intervention. The structure and work principle of the electric brake booster system is first introduced. The precise control from pedal force to hydraulic pressure is the key for such a power-assisted brake actuator. We translate the control problem of force feedback control to position tracking control.
Journal Article

Design of Anti-lock Braking System Based on Regenerative Braking for Distributed Drive Electric Vehicle

2018-04-03
2018-01-0816
In this article, the regenerative braking system is designed, which can realize the torque allocation between electric braking and hydraulic braking, where the cost function designed in this article considers factors of braking torque following effect, energy regenerative power, and hydraulic braking consumed power. In addition, a complete anti-lock braking system (ABS) is designed, which is based on regenerative braking. With the optimal slip ratio as control target, target wheel speed, control wheel speed, braking torque control strategy, and enable/disenable control logic of ABS are determined. By MATLAB/Simulink-DYNA4 co-simulation and real vehicle test, the feasibility and applicability of ABS based on regenerative braking are verified, under the condition of small severity of braking.
Journal Article

Vehicle Longitudinal Control Algorithm Based on Iterative Learning Control

2016-04-05
2016-01-1653
Vehicle Longitudinal Control (VLC) algorithm is the basis function of automotive Cruise Control system. The main task of VLC is to achieve a longitudinal acceleration tracking controller, performance requirements of which include fast response and high tracking accuracy. At present, many control methods are used to implement vehicle longitudinal control. However, the existing methods are need to be improved because these methods need a high accurate vehicle dynamic model or a number of experiments to calibrate the parameters of controller, which are time consuming and costly. To overcome the difficulties of controller parameters calibration and accurate vehicle dynamic modeling, a vehicle longitudinal control algorithm based on iterative learning control (ILC) is proposed in this paper. The algorithm works based on the information of input and output of the system, so the method does not require a vehicle dynamics model.
Journal Article

An Indirect TPMS Algorithm Based on Tire Resonance Frequency Estimated by AR Model

2016-04-05
2016-01-0459
Proper tire pressure is very important for multiple driving performance of a car, and it is necessary to monitor and warn the abnormal tire pressure online. Indirect Tire Pressure Monitoring System (TPMS) monitors the tire pressure based on the wheel speed signals of Anti-lock Braking System (ABS). In this paper, an indirect TPMS method is proposed to estimate the tire pressure according to its resonance frequency of circumferential vibration. Firstly, the errors of ABS wheel speed sensor system caused by the machining tolerance of the tooth ring are estimated based on the measured wheel speed using Recursive Least Squares (RLS) algorithm and the measuring errors are eliminated from the wheel speed signal. Then, the data segments with drive train torsional vibration are found out and eliminated by the methods of correlation analysis.
Technical Paper

Cooperative Ramp Merging Control for Connected and Automated Vehicles

2020-02-24
2020-01-5020
Traffic congestions are increasingly severe in urban areas, especially at the merging areas of the ramps and the arterial roads. Because of the complex conflict relationship of the vehicles in ramps and arterial roads in terms of time-spatial constraints, it is challenging to coordinate the motion of these vehicles, which may easily cause congestions at the merging areas. The connected and automated vehicles (CAVs) provides potential opportunities to solve this problem. A centralized merging control method for CAVs is proposed in this paper, which can organize the traffic movements in merging areas efficiently and safely. In this method, the merging control model is built to formulate the vehicle coordination problem in merging areas, which is then transformed to the discrete nonlinear optimization form. A simulation model is built to verify the proposed method.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Technical Paper

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel

2020-04-14
2020-01-0340
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

A Path Planning and Model Predictive Control for Automatic Parking System

2020-04-14
2020-01-0121
With the increasing number of urban cars, parking has become the primary problem that people face in daily life. Therefore, many scholars have studied the automatic parking system. In the existing research, most of the path planning methods use the combined path of arc and straight line. In this method, the path curvature is not continuous, which indirectly leads to the low accuracy of path tracking. The parking path designed using the fifth-order polynomial is continuous, but its curvature is too large to meet the steering constraints in some cases. In this paper, a continuous-curvature parking path is proposed. The parking path tracker based on Model Predictive Control (MPC) algorithm is designed under the constraints of the control accuracy and vehicle steering. Firstly, in order to make the curvature of the parking path continuous, this paper superimposes the fifth-order polynomial with the sigmoid function, and the curve obtained has the continuous and relatively small curvature.
Technical Paper

Decision Making and Trajectory Planning for Lane Change Control Inspired by Parallel Parking

2020-04-14
2020-01-0134
Lane-changing systems have been developed and applied to improve environmental adaptability of advanced driver assistant system (ADAS) and driver comfort. Lane-changing control consists of three steps: decision making, trajectory planning and trajectory tracking. Current methods are not perfect due to weaknesses such as high computation cost, low robustness to uncertainties, etc. In this paper, a novel lane changing control method is proposed, where lane-changing behavior is analogized to parallel parking behavior. In the perspective of host vehicle with lane-changing intention, the space between vehicles in the target adjacent lane can be regarded as dynamic parking space. A decision making and path planning algorithm of parallel parking is adapted to deal with lane change condition. The adopted algorithm based on rules checks lane-changing feasibility and generates desired path in the moving reference system at the same speed of vehicles in target lane.
Technical Paper

Super-Twisting Second-Order Sliding Mode Control for Automated Drifting of Distributed Electric Vehicles

2020-04-14
2020-01-0209
Studying drifting dynamics and control could extend the usable state-space beyond handling limits and maximize the potential safety benefits of autonomous vehicles. Distributed electric vehicles provide more possibilities for drifting control with better grip and larger maximum drift angle. Under the state of drifting, the distributed electric vehicle is a typical nonlinear over-actuated system with actuator redundancy, and the coupling of input vectors impedes the direct use of control algorithm of upper. This paper proposes a novel automated drifting controller for the distributed electric vehicle. First, the nonlinear over-actuated system, comprised of driving system, braking system and steering system, is formulated and transformed to a square system through proposed integrative recombination method of control channel, making general nonlinear control algorithms suitable for this system.
X