Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

External Corrosion Resistance of CuproBraze® Radiators

2001-05-14
2001-01-1718
New technology for the manufacturing of copper/brass heat exchangers has been developed and the first automotive radiators are already in operation in vehicles. This new technology is called CuproBraze®. One of the essential questions raised is the external corrosion resistance with reference to the present soldered copper/brass radiators and to the brazed aluminium radiators. Based on the results from electrochemical measurements and from four different types of accelerated corrosion tests, the external corrosion resistance of the CuproBraze® radiators is clearly better than that of the soldered copper/brass radiators and competitive with the brazed aluminum radiators, especially as regards marine atmosphere. Due to the relatively high strength of the CuproBraze® heat exchangers, down gauging of fins and tubes in some applications is attractive. High performance coatings can ensure long lifetime from corrosion point of view, even for thin gauge heat exchangers.
Technical Paper

Thermodynamic Potential of Electrical Turbocharging for the Case of Small Passenger Car ICE under Steady Operation

2017-03-28
2017-01-0526
The proposed paper deals with thermodynamic optimization of highly flexible ICE (variable compression ratio, intake/exhaust VVA) while comparing e-turbocharging concept with classical one. The e-turbocharging approach is based on idea that compressor/turbine has its own electric machine (motor/generator) and that additional electric energy can be supplied/attached from/to engine crank train. Hence it allows independent control of compressor/turbine. On the other hand, classical approach is based on a standard mechanical connection between turbine and compressor. The whole system (flexible engine + boost device) is optimized under steady operation – low load (BMEP of 4 bar), medium load (BMEP of 13 bar), high load (BMEP of 30, 25 and 18 bar) and maximum load are considered. Moreover, 3 combustion concepts are considered – classical SI and CI, and ideal RCCI. Sensitivity study of selected parameters is performed: e.g., efficiency of electric machine(s), HP exhaust manifold volume.
Technical Paper

Multi-Zone Models of Combustion and Heat Transfer Processes in SI Engines

2011-06-09
2011-37-0024
The paper is focused on simulation of high-pressure part of thermodynamic cycle in a four-stroke spark ignition engine. The main author's ambition is to create the fast and sufficiently accurate multi-zone simulating tool working on the basis of simple quasi-dimensional method reflecting a real 3-D combustion chamber geometry and using the specific approach to transfer and transformation of species. The introduced procedure combines a classical kinetic scheme with the flexible Holub's method for chemical equilibrium to solve serious numerical issues resulting from chemical kinetics itself. But for the present, the current version model uses just fast chemical kinetics with direct transformation of reactants to chemical equilibrium state. New code is able to work in predictive or inverse mode as well. Real 3-D combustion chamber geometry is taken into account by means of in advance created geometrical characteristics to save a computational time during the simulation.
Technical Paper

Heat Transfer Study of a High Power Density Diesel Engine

2004-10-25
2004-01-2962
The development of diesel engines is constantly leading to greater increases in the power density. The heat load into the combustion chamber walls increases with the increased power density. Estimating correct local heat fluxes inside the combustion chamber is one of the most challenging tasks in engine simulation. In this study, the heat load of the piston was estimated with the help of the modern simulation tools CFD and FEM. The objective of the work was to evaluate the thermal stress of a research engine designed for an exceptionally high maximum and mean pressure. The local heat transfer coefficient and gas temperature were simulated with a CFD code with the standard and modified wall functions and used as boundary values for the FEM analysis. As a reference case, a model of a production engine with measured piston surface temperatures was used to validate the combined CFD and FEM analysis.
Technical Paper

Assessment of In-Cylinder Thermal Barrier Coatings over a Full Vehicle Drive Cycle

2021-04-06
2021-01-0456
In-cylinder thermal barrier coatings (TBCs) have the capability to reduce fuel consumption by reducing wall heat transfer and to increase exhaust enthalpy. Low thermal conductivity, low volumetric heat capacity thermal barrier coatings tend to reduce the gas-wall temperature difference, the driving potential for heat transfer from the gas to the combustion chamber surfaces. This paper presents a coupling between an analytical methodology for multi-layer coated wall surface temperature prediction with a fully calibrated production model in a commercial system-level simulation software package (GT-Power). The wall surface temperature at each time step was calculated efficiently by convolving the engine wall response function with the time-varying surface boundary condition, i. e., in-cylinder heat flux and coolant temperature. This tool allows the wall to be treated either as spatially uniform with one set of properties, or with independent head/piston/liner components.
X