Refine Your Search

Topic

Author

Search Results

Journal Article

Design of a Composite Structural Panel for High Volume Production

2015-04-14
2015-01-1311
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within FCA US, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from the BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of FCA US vehicles.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Quantification of Clamp Loss and Subsequent Loosening of Automotive Hub-Knuckle Joints under Time-Varying Proving Ground Loading

2020-04-14
2020-01-0181
Threaded fasteners or bolted joints are used extensively in automotive assemblies. There are standard procedures to evaluate joint performance under block cycles or road loads. The deciding load case for such joint design is slippage analysis of the joint. There are studies done to evaluate the theoretical and experimental behavior of these joints. There are different ways of understanding the interaction between the bolt and the nut under different loading scenarios. However, none have provided a satisfactory method of quantifying bolt loosening or loss of clamp load under cyclic loading, where no slippage is observed. Under varying loads, initial relaxation of the joint is followed by a loss of clamping load. Below a critical value, complete loss of clamping load progresses very rapidly and this results in a loose joint.
Technical Paper

Experimental Study on Static and Fatigue Performance of Self-Piercing Riveted Joints and Adhesively Bonded Self-Piercing Riveted Joints Connecting Steel and Aluminum Components

2020-04-14
2020-01-0177
This paper describes an experimental study on the performance of self-piercing riveted (SPR) joints and adhesively bonded SPR joints connecting steel and aluminum components under both quasi-static and cyclic loading. The joint configurations cover a wide range of material gauges, types and grades. Two and three thickness joints, with and without adhesive are also part of this study. Load versus deflection behavior, load carrying capacity, fatigue life and the failure modes for each type of joint are discussed. This study focuses on the influence of dissimilar material and adhesives to the joint performance.
Technical Paper

Review and Assessment of Multiaxial Fatigue Limit Models

2020-04-14
2020-01-0192
The purpose of this paper is to provide a comparison of multiaxial fatigue limit models and their correlation to experimental data. This paper investigates equivalent stress, critical plane and invariant-based multiaxial fatigue models. Several methods are investigated and compared based on ability to predict multiaxial fatigue limits from data published in literature. The equivalent stress based model developed by Lee, Tjhung and Jordan (LTJ), provides very accurate predictions of the fatigue limit under multiaxial loading due to its ability to account for non-proportional loading. This accuracy comes from the model constant which is calculated based on multiaxial fatigue data. This is the only model investigated that requires multiaxial fatigue testing to generate the model parameters. All other models rely on uniaxial test results.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

Experimental Study on Static and Fatigue Behavior of a Short Glass Fiber Reinforced Polypropylene

2020-04-14
2020-01-0190
One approach of lighting vehicle weight is using composite materials. Fiber reinforced polypropylene is one of the most popular composite materials. To improve accuracy in the prediction of durability performance of structures made of this kind of composite material, static and fatigue properties of a short glass fiber reinforced polypropylene have been physically studied. This paper describes details of test coupon design, fabrication, test setup of both quasi-static and fatigue tests, test results and discussions. In this study, various loading orientations (0o, 20o, 90o and knit line), temperatures (22oC/23oC and 80oC/85oC), loading ratio (R = -1.0, -0.5, -0.2, 0.1 and 0.4) are considered.
Journal Article

Effect of Surface Roughness and Lubrication on Scuffing for Austempered Ductile Iron (ADI)

2015-04-14
2015-01-0683
This paper describes the scuffing tests performed to understand the effect of surface roughness and lubrication on scuffing behavior for austempered ductile iron (ADI) material. As the scuffing tendency is increased, metal-to-metal interaction between contacting surfaces is increased. Lubrication between sliding surfaces becomes the boundary or mixed lubrication condition. Oil film breakdown leads to scuffing failure with the critical load. Hence, the role of surface roughness and lubrication becomes prominent in scuffing study. There are some studies in which the influence of the surface roughness and lubrication on scuffing was evaluated. However, no comprehensive scuffing study has been found in the literature regarding the effect of surface roughness and lubrication on scuffing behavior of ADI material. The current research took into account the inferences of surface roughness and lubrication on scuffing for ADI.
Technical Paper

Wood-to-Wheels: A Multidisciplinary Research Initiative in Sustainable Transportation Utilizing Fuels and Co-Products from Forest Resources

2008-10-20
2008-21-0026
Michigan Technological University has established a broad-based university-wide research initiative, termed Wood-to-Wheels (W2W), to develop and evaluate improved technologies for growing, harvesting, converting, and using woody biomass in renewable transportation fuel applications. The W2W program bridges the entire biomass development-production-consumption life cycle with research in areas including forest resources, bioprocessing, engine/vehicle systems, and sustainable decisions. The W2W chain establishes a closed cycle of carbon between the atmosphere, woody biomass, fuels, and vehicular systems that can reduce the accumulation of CO2 in the atmosphere. This paper will summarize the activities associated with the Wood-to-Wheels initiative and describe challenges and the potential benefits that are achievable.
Technical Paper

Splashing Criterion and Topological Features of a Single Droplet Impinging on the Flat Plate

2018-04-03
2018-01-0289
This paper aims to provide the experimental and numerical investigation of a single fuel droplet impingement on the different wall conditions to understand the detailed impinging dynamic process. The experimental work was carried out at the room temperature and pressure except for the variation of the impinged wall temperature. A high-speed camera was employed to capture the silhouette of the droplet impinging on wall process against a collimated light. Water, diesel, n-dodecane, and n-heptane were considered as four different droplets and injected from a precision syringe pump with the volume flow rate of 0.2 mL/min at various impact Weber numbers. The impingement outcomes after droplet impacting on the wall include stick, spread, rebound and splash, which depend on the controlling parameters of Weber number, Reynolds number, liquid and surface properties, etc.
Technical Paper

Evaluation of Cylinder Pressure Transducer Performance Including the Influence of Mounting Location and Thermal Protection

2022-02-21
2022-01-5014
The piezoelectric cylinder pressure transducer is one of the most critical tools for internal combustion (IC) engine research and development. However, not all cylinder pressure transducers perform equally in every application, and the fidelity of transducers can vary across different models and manufacturers. Even slightly dissimilar models from the same manufacturer can have significantly different performance in areas such as sensitivity and resistance to intra-cycle thermal shock. These performance differences can lead to errors and inconsistencies in the calculation of combustion metrics like mean effective pressure (MEP), the polytropic compression and expansion exponents (PolyC and PolyE), and mass fraction burn (MFB) calculations. The variations can lead to suboptimal hardware and calibration choices during the engine development phase.
Technical Paper

Lateral Controllability for Automated Driving (SAE Level 2 and Level 3 Automated Driving Systems)

2021-04-06
2021-01-0864
In this study we collect and analyze data on how hands-free automated lane centering systems affect the controllability of a hazardous event during an operational situation by a human operator. Through these data and their analysis, we seek to answer the following questions: Is Level 2 and Level 3 automated driving inherently uncontrollable as a result of a steering failure? Or, is there some level of operator control of hazardous situations occurring during Level 2 and Level 3 automated driving that can reasonably be expected, given that these systems still rely on a driver as the primary fall back. The controllability focus group experiments were carried out using an instrumented MY15 Jeep® Cherokee with a prototype Level 2 automated driving system that was modified to simulate a hands-free steering system on a closed track with speeds up to 110kph. The vehicle was also fitted with supplemental safety measures to ensure experimenter control.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

1997-02-24
970986
The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

Prediction of Tow Hook and Bolted Joint Strength Behavior Using Virtual Test Simulation Technique

2020-04-14
2020-01-1399
There is an increasing demand for reducing vehicle development process and minimizing cost due to tough competition in Automotive market. One of the major focus areas is minimizing the vehicle proto build that are required for physical testing during vehicle development. Tow hooks are key structural components for the vehicle, which are designed to withstand structural strength performance under various vehicles towing condition. Typical extreme load scenario for the vehicle can be towing fully loaded vehicle breaks down on uphill road or stuck in wet muddy condition. To exercise the tow hook structural development in early design phase, it is important to have reliable simulation process. This paper focuses on development of virtual test simulation process that replicates the tow hook system test behavior for the operating load. The study includes the detail modeling of clevis load applicator, tow hook, bolt joint and attached test bed plate for capturing the load path.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

A Data-Driven Approach to Determine the Single Droplet Post-Impingement Pattern on a Dry Wall Using Statistical Machine Learning Classification Methods

2021-04-06
2021-01-0552
The study of spray-wall interaction is of great importance to understand the dynamics during fuel-surface impingement process in modern internal combustion engines. The identification of droplet post-impingement pattern (contact, transition, non-contact) and droplet characteristics can quantitatively provide an estimation of energy transfer for spray-wall interaction, thus further influencing air-fuel mixing and emissions under combusting conditions. Theoretical criteria of single droplet post-impingement pattern on a dry wall have been experimentally and numerically studied by many researchers to quantify the hydrodynamic droplet behaviors. However, apart from model fidelity, another issue is the scalability. A theoretical criterion developed from one case might not be well suited to another scenario. In this paper, a data-driven approach for single droplet-dry wall post-impingement pattern utilizing arithmetical machine learning classification methods is proposed and demonstrated.
Technical Paper

Studies on Simulation and Real Time Implementation of LQG Controller for Autonomous Navigation

2021-04-06
2021-01-0108
The advancement in embedded systems and positional accuracy with base station GPS modules created opportunity to develop high performance autonomous ground vehicles. However, the development of vehicle model and making accurate state estimations play vital role in reducing the cross track error. The present research focus on developing Linear Quadratic Gaussian (LQG) with Kalman estimator for autonomous ground vehicle to track various routes, that are made with the series of waypoints. The model developed in the LQG controller is a kinematic bicycle model, which mimics 1/5th scale truck. Further, the cubic spline fit has been used to connect the waypoints and generate the continuous desired/target path. The testing and implementation has been done at APS labs, MTU on the mentioned vehicle to study the performance of controller. Python has been used for simulations, controller coding and interfacing the sensors with controller.
Journal Article

Guidelines for SUV Bodywork Design Focused on Aerodynamic Drag Reduction Using the Generic AeroSUV Model

2020-04-14
2020-01-0478
SUV Aerodynamics has received increased attention as the stake this segments holds in the automotive market keeps growing year after year, as well as its direct impact on fuel economy. Understanding the key physics in order to accomplish both fuel efficient and aesthetic products is paramount, which indeed gave origin to a major initiative to foster collaborative aerodynamic research across academia and industry, the so-called DrivAer model. In addition to this sedan-based model, a new dedicated SUV generic model, called AeroSUV [1], has been introduced in 2019, also intended to provide a common framework for aerodynamic research for both experimental work and numerical simulation validation. The present paper provides an area of common ground for SUV bodywork design focused on aerodynamic drag reduction by investigating both Estate and Fast back configurations of the generic AeroSUV model.
Journal Article

Predictive Break-In and Rapid Efficiency Characterization of Beam Axles

2020-04-14
2020-01-1413
Given continued industry focus on reducing parasitic losses, the ability to accurately measure the magnitude of losses on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently, in addition to offering a reliable process to assess enablers for efficiency improvements. This paper reviews the development of SAE draft standard J3218, which is a comprehensive test procedure to break-in and characterize the efficiency of beam axles. Focus areas of the study included ensuring the axle’s efficiency does not change as it is being characterized, building a detailed map of efficiency at a wide range of operating points, and minimizing test time. The resulting break-in procedure uses an asymptotic regression approach to predict fully broken in efficiency of the axle and determine how much the efficiency of the axle changes during the characterization phase.
Technical Paper

Evaluation of Corpuscular Particle Method (CPM) in LS-DYNA for Airbag Modeling

2020-04-14
2020-01-0978
This paper presents a systematic study to assess maturity of Corpuscular Particle Method (CPM) to accurately predict airbag deployment kinematics and its overall responses. The study was performed in three phases: (1) a correlation assessment of CPM predicted inflator characteristics to closed tank tests; (2) a correlation assessment of CPM predicted airbag deployment kinematics, airbag pressure, reaction force from a static deployment of a Driver Airbag (DAB) and (3) a correlation prediction of the impactor force by CPM versus impactor force from physical drop tower tests. These studies were repeated using the Uniform Pressure Method (UPM), to compare the numerical methods for their accuracy in predicting the physical test, computational cost, and applicability. Results from the study suggest that CPM satisfies the fundamental energy laws, and accurately captures the realistic airbag deployment kinematics, especially during the early deployment stage, unlike UPM.
X