Refine Your Search

Topic

Author

Search Results

Video

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-06-18
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Engine Test for DOC Quenching in DOC-DPF System for Non-Road Applications

2010-04-12
2010-01-0815
The use of a diesel oxidation catalyst (DOC) in conjunction with a diesel particulate filter (DPF) is now a well-established aftertreatment system design for on-road heavy duty diesel. For non-road applications, the DOC must respond to the need for performance under more diverse and less favorable conditions, such as operation at low loads in cold weather. To choose a DOC technology for such applications, one must have practical and meaningful tests that address the specific catalytic functions of interest such as hydrocarbon oxidation to produce heat for regenerating DPF. This paper describes the development of an engine test protocol that focuses on resistance to the phenomenon known as quenching, the cessation of hydrocarbon (HC) oxidation that occurs when the exhaust temperature decreases below the light-off temperature of the catalyst. During development, the sensitivity and repeatability of the test were carefully scrutinized.
Journal Article

The Evaluation of a New Kinematic Emissions Model on Real and Simulated Driving Cycles

2010-05-05
2010-01-1564
The evaluation of vehicles real emissions circulating in urban areas is a basic activity for planning and management of implemented traffic measures aiming at emission control and air quality improvement. National, region, and city emission inventories require overall average emission estimation based on modeling technique with a few input parameters such as fleet composition and mission profile, represented by average speed. But in the field of emission modeling an important open issue is the very expensive costs of experimental campaigns needed to obtain driving cycle statistically representative of driving behavior, also if only in a specific link of a network. A possible approach to deal with this problem is represented by the use of traffic microscopic simulation models which are capable to simulate individual car motion on the basis of traffic conditions, road characteristics and management rules.
Journal Article

Fuel Consumption Optimization and Noise Reduction in a Spark-Ignition Turbocharged VVA Engine

2013-04-08
2013-01-1625
Modern VVA systems offer new potentialities in improving the fuel consumption for spark-ignition engines at low and medium load, meanwhile they grant a higher volumetric efficiency and performance at high load. Recently introduced systems enhance this concept through the possibility of concurrently modifying the intake valve opening, closing and lift leading to the development of almost "throttle-less" engines. However, at very low loads, the control of the air-flow motion and the turbulence intensity inside the cylinder may require to select a proper combination of the butterfly throttling and the intake valve control, to get the highest BSFC (Brake Specific Fuel Consumption) reduction. Moreover, a low throttling, while improving the fuel consumption, may also produce an increased gas-dynamic noise at the intake mouth. In highly "downsized" engines, the intake valve control is also linked to the turbocharger operating point, which may be changed by acting on the waste-gate valve.
Journal Article

TMF Life Prediction of High Temperature Components Made of Cast Iron HiSiMo: Part II: Multiaxial Implementation and Component Assessment

2014-04-01
2014-01-0905
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their life cycle. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In Part I of the paper, a fracture mechanics model for TMF life prediction was developed based on results of uniaxial tests. In this paper (Part II), the model is formulated for three-dimensional stress states, so that it can be applied in a post-processing step of a finite-element analysis. To obtain reliable stresses and (time dependent plastic) strains in the finite-element calculation, a time and temperature dependent plasticity model is applied which takes non-linear kinematic hardening into account.
Journal Article

TMF Life Prediction of High Temperature Components Made of Cast Iron HiSiMo: Part I: Uniaxial Tests and Fatigue Life Model

2014-04-01
2014-01-0915
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In this paper (Part I), the low-cycle fatigue (LCF) and TMF properties of HiSiMo are investigated in uniaxial tests and the damage mechanisms are addressed. On the basis of the experimental results a fatigue life model is developed which is based on elastic, plastic and creep fracture mechanics results of short cracks, so that time and temperature dependent effects on damage are taken into account.
Technical Paper

Modeling of Soot Deposition and Active Regeneration in Wall-flow DPF and Experimental Validation

2020-09-15
2020-01-2180
Growing concerns about the emissions of internal combustion engines have forced the adoption of aftertreatment devices to reduce the adverse impact of diesel engines on health and environment. Diesel particulate filters are considered as an effective means to reduce the particle emissions and comply with the regulations. Research activity in this field focuses on filter configuration, materials and aging, on understanding the variation of soot layer properties during time, on defining of the optimal strategy of DPF management for on-board control applications. A model was implemented in order to simulate the filtration and regeneration processes of a wall-flow particulate filter, taking into account the emission characteristic of the engine, whose architecture and operating conditions deeply affect the size distribution of soot particles.
Journal Article

Analytical Investigation of Urea Deposits in SCR System

2015-04-14
2015-01-1037
An aqueous urea solution is used as the source of ammonia for selective catalytic reduction (SCR) of NOx to reduce the emissions of NOx in the exhaust of diesel vehicles. However, the decomposition of urea into ammonia is not always complete, resulting in solid urea deposit formation in the decomposition tube or on the SCR catalyst. These solid deposits can impede the flow of the exhaust gases (and uniformity of NH3 supply) and reduce SCR catalyst performance over time. To minimize the formation of urea deposit and to meet EPA NOx emission regulations, it is important to understand the chemistry of formation or removal of the deposit in the decomposition tube and SCR catalyst. In this report, IR spectroscopy, UV-visible spectroscopy, thermogravimetric analysis and elemental analysis have been used to determine the chemical composition of the solid urea deposits formed by the thermal decomposition of urea.
Journal Article

A 3D CFD Simulation of GDI Sprays Accounting for Heat Transfer Effects on Wallfilm Formation

2017-09-04
2017-24-0041
During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Technical Paper

Experimental and 1D Numerical Investigations on the Exhaust Emissions of a Small Spark Ignition Engine Considering the Cylinder-by-Cylinder Variability

2020-04-14
2020-01-0578
This paper reports a numerical and experimental analysis on a twin-cylinder turbocharged Spark Ignition engine carried out to investigate the cylinder-to-cylinder variability in terms of performance, combustion evolution and exhaust emissions. The engine was tested at 3000 rpm in 20 different steady-state operating conditions, selected with the purpose of observing the influence of cylinder-by-cylinder A/F ratio variations and the EGR effects on the combustion process and exhaust emissions for low to medium/high loads. The experimental outcomes showed relevant differences in the combustion evolution (characteristic combustion angles) between cylinders and not negligible variations in the emissions of the single cylinder exhaust and the overall engine one. This misalignment resulted to be due to differences in the injected fuel amount by the port injectors in the two cylinders, mainly deriving from the specific fuel rail geometry.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Technical Paper

The Effect of a Ceramic Particulate Trap on the Particulate and Vapor Phase Emissions of a Heavy-Duty Diesel Engine

1991-02-01
910609
Exhaust emissions were characterized from a Cummins LTA10 heavy-duty diesel engine operated at two EPA steady-state modes with and without an uncatalyzed Corning ceramic particulate trap. The regulated emissions of nitrogen oxides (NOx), hydrocarbons (HC), and total particulate matter (TPM) and its components as well as the unregulated emissions of PAH, nitro-PAH, mutagenic activity and particle size distributions were measured. The consistently significant effects of the trap on regulated emissions included reductions of TPM and TPM-associated components. There were no changes in NOx and HC were reduced only at one operating condition. Particle size distribution measurements showed that nuclei-mode particles were formed downstream of the trap, which effectively removed accumulation-mode particles. All of the mutagenicity was direct-acting and the mutagenic activity of the XOC was approximately equivalent to that of the SOF without the trap.
Technical Paper

CFD Numerical Reconstruction of the Flash Boiling Gasoline Spray Morphology

2020-09-27
2020-24-0010
The numerical reconstruction of the liquid jet generated by a multi-hole injector, operating in flash-boiling conditions, has been developed by means of a Eulerian- Lagrangian CFD code and validated thanks to experimental data collected with schlieren and Mie scattering imaging techniques. The model has been tested with different injection parameters in order to recreate various possible engine thermodynamic conditions. The work carried out is framed in the growing interest present around the gasoline direct-injection systems (GDI). Such technology has been recognized as an effective way to achieve better engine performance and reduced pollutant emissions. High-pressure injectors operating in flashing conditions are demonstrating many advantages in the applications for GDI engines providing a better fuel atomization, a better mixing with the air, a consequent more efficient combustion and, finally, reduced tailpipe emissions.
Journal Article

Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods

2015-04-14
2015-01-0397
The present paper deals with a comprehensive analysis of the knocking phenomenon through experiments and numerical simulations. Conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine. The engine exhibits optical accesses to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones. Optical data are correlated to in-cylinder pressure-based indicated analyses in a cycle resolved approach.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
X