Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Investigation of EGR Treatment on the Emission and Operating Characteristics of Modern Diesel Engines

2007-04-16
2007-01-1083
Tests are conducted to improve the use of exhaust gas recirculation on a single cylinder diesel engine with EGR stream treatment techniques that include intake heating, combustible substance oxidation, catalytic fuel reforming, and partial bypass-flow control. In parallel with the empirical work, theoretical modeling analyses are performed to investigate the effectiveness of the reforming process and the combined effects on the overall system efficiency. The research is aimed at stabilizing and expanding the limits of heavy EGR during steady and transient operations so that the individual limiting conditions of EGR can be better identified. Additionally, the heavy EGR is applied to enable in-cylinder low temperature combustion. The effectiveness of EGR treatment on engine emission and operating characteristics are therefore reported.
Technical Paper

Low Temperature Combustion Strategies for Compression Ignition Engines: Operability limits and Challenges

2013-04-08
2013-01-0283
Low temperature combustion (LTC) strategies such as homogeneous charge compression ignition (HCCI), smokeless rich combustion, and reactivity controlled compression ignition (RCCI) provide for cleaner combustion with ultra-low NOx and soot emissions from compression-ignition engines. However, these strategies vary significantly in their implementation requirements, combustion characteristics, operability limits as well as sensitivity to boundary conditions such as exhaust gas recirculation (EGR) and intake temperature. In this work, a detailed analysis of the aforementioned LTC strategies has been carried out on a high-compression ratio, single-cylinder diesel engine. The effects of intake boost, EGR quantity/temperature, engine speed, injection scheduling and injection pressure on the operability limits have been empirically determined and correlated with the combustion stability and performance metrics.
X