Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

An Efficient IC Engine Conjugate Heat Transfer Calculation for Cooling System Design

2007-04-16
2007-01-0147
This study focuses on how to predict hot spots of one of the cylinders of a V8 5.4 L FORD engine running at full load. The KIVA code with conjugate heat transfer capability to simulate the fast transient heat transfer process between the gas and the solid phases has been developed at the Michigan Technological University and will be used in this study. Liquid coolant flow was simulated using FLUENT and will be used as a boundary condition to account for the heat loss to the cooling fluid. In the first step of calculation, the coupling between the gas and the solid phases will be solved using the KIVA code. A 3D transient wall heat flux at the gas-solid interface is then compiled and used along with the heat loss information from the FLUENT data to obtain the temperature distribution for the engine metal components, such as cylinder wall, cylinder head, etc.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

Development of a 1-D CPF Model to Simulate Active Regeneration of a Diesel Particulate Filter

2009-04-20
2009-01-1283
A quasi-steady 1-dimensional computer model of a catalyzed particulate filter (CPF) capable of simulating active regeneration of the CPF via diesel fuel injection upstream of a diesel oxidation catalyst (DOC) or other means to increase the exhaust gas temperature has been developed. This model is capable of predicting gaseous species concentrations (HC's, CO, NO and NO2) and exhaust gas temperatures within and after the CPF, for given input values of gaseous species and PM concentrations before the CPF and other inlet variables such as time-varying temperature of the exhaust gas at the inlet of the CPF and volumetric flow rate of exhaust gas.
Technical Paper

The Filtration, Oxidation and Pressure Drop Characteristics of a Catalyzed Particulate Filter during Active Regeneration – A 1D Modeling Study

2009-04-20
2009-01-1274
Active regeneration of a catalyzed particulate filter (CPF) is affected by a number of parameters specifically particulate matter loading and inlet temperature. The MTU 1-D 2-Layer CPF model [1] was used to analyze these effects on the pressure drop, oxidation and filtration characteristics of a CPF during active regeneration. In addition, modeling results for post loading experiments were analyzed to understand the difference between loading a clean filter as compared to a partially regenerated filter. Experimental data obtained with a production Cummins regenerative particulate filter for loading, active regenerations and post loading experiments were used to calibrate the MTU 1-D 2-Layer CPF model. The model predicted results are compared with the experimental data and were analyzed to understand the CPF characteristics during active regeneration at 1.1, 2.2 and 4.1 g/L particulate matter (PM) loading and CPF inlet temperatures of 525, 550 and 600°C.
Technical Paper

An Experimental and Numerical Study of the Performance Characteristics of the Diesel Oxidation Catalyst in a Continuously Regenerating Particulate Filter

2003-10-27
2003-01-3176
A one-dimensional model simulating the oxidation of CO, HC, and NO was developed to predict the gaseous emissions downstream of a diesel oxidation catalyst (DOC). The model is based on the conservation of mass, species, and energy inside the DOC and draws on past research literature. Steady-state experiments covering a wide range of operating conditions (exhaust temperatures, flow rates and gaseous emissions) were performed, and the data were used to calibrate and validate the model. NO conversion efficiencies of 50% or higher were obtained at temperatures between 300°C and 350°C. CO conversion efficiencies of 85% or higher and HC conversion efficiencies of 75% or higher were found at every steady state condition above 200°C. The model agrees well with the experimental results at temperatures from 200°C to 500°C, and volumetric flow rates from 8 to 42 actual m3/min.
Technical Paper

The Effect of Low Sulfur Fuel and a Ceramic Particle Filter on Diesel Exhaust Particle Size Distributions

1992-02-01
920566
Diesel exhaust particle size distributions were measured using an Electrical Aerosol Analyzer (EAA) with both conventional (0.31 wt. pet sulfur) and low sulfur fuel (0.01 wt pet sulfur) with and without a ceramic diesel particle filter (DPF). The engine used for this study was a 1988 heavy-duty diesel engine (Cummins LTA10-300) operated at EPA steady-state modes 9 and 11. The particle size distribution results indicated the typical bi-modal distribution; however, there were clear differences in the number of particles in each mode for all conditions. For the baseline conditions with no DPF, there was more than one order of magnitude greater number of particles in the nuclei mode for the conventional fuel as compared to the low sulfur fuel, while the accumulation modes for each fuel were nearly identical.
Technical Paper

Development of a 1-D Catalyzed Diesel Particulate Filter Model for Simulation of the Oxidation of Particulate Matter and Gaseous Species During Passive Oxidation and Active Regeneration

2013-04-08
2013-01-1574
Numerical modeling of aftertreatment systems has been proven to reduce development time as well as to facilitate understanding of the internal physical and chemical processes occurring during different operating conditions. Such a numerical model for a catalyzed diesel particulate filter (CPF) was developed in this research work which has been improved from an existing numerical model briefly described in reference. The focus of this CPF model was to predict the effect of the catalyst on the gaseous species concentrations and to develop particulate matter (PM) filtration and oxidation models for the PM cake layer and substrate wall so as to develop an overall model that accurately predicts the pressure drop and PM oxidized during passive oxidation and active regeneration. Descriptions of the governing equations and corresponding numerical methods used with relevant boundary conditions are presented.
Technical Paper

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

2005-05-11
2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent).
Technical Paper

A Computer Simulation of the Turbocharged Diesel Engine as an Enhancement of the Vehicle Engine Cooling System Simulation

1997-05-19
971804
A computer simulation of the turbocharged direct- injection diesel engine was developed to enhance the capabilities of the Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University. The engine model was extensively validated against Detroit Diesel Corporation's (DDC) Series 60 engine data. In addition to the new engine model a charge-air-cooler model was developed and incorporated into the VECSS. A Freightliner truck with a Detroit Diesel's Series 60 engine, Behr McCord radiator, AlliedSignal/Garrett Automotive charge air cooler, Kysor DST variable speed fan clutch and other cooling system components was used for the study. The data were collected using the Detroit Diesel Electronic Controls (DDEC)-Electronic Control Module (ECM) and Hewlett Packard data acquisition system. The enhanced model's results were compared to the steady state TTD (top tank differential) data.
Technical Paper

The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions

1993-03-01
930730
The effects of fuel sulfur concentration on heavy-duty diesel emissions have been studied at two EPA steady-state operating conditions, mode 9 (1900 RPM, 75% Load) and mode 11(1900 RPM, 25% Load). Data were obtained using one fuel at two sulfur levels (Low Sulfur, LS = 0.01 wt% S and Doped Low Sulfur DS = 0.29 wt% S). All tests were conducted using a Cummins LTA10-300 heavy-duty diesel engine. No significant changes were found for the nitrogen oxides (NOx), soluble organic fractions (SOF) and XAD-2 (a copolymer of styrene and divinylbenzene) organic component (XOC) due to the fuel sulfur level increase at either engine mode. The hydrocarbon (HC) levels were not significantly affected by sulfur at mode 9; however, at mode 11 the HC levels were reduced by 16%. The total particulate matter (TPM) levels increased by 17% at mode 11 and by 24% at mode 9 (both significantly different).
Technical Paper

Effects of an Oxidation Catalytic Converter on Regulated and Unregulated Diesel Emissions

1994-03-01
940243
In this study, the effects of an oxidation catalytic converter (OCC) on regulated and unregulated emissions from a 1991 prototype Cummins I.10-310 diesel engine fueled with a 0.01 weight percent sulfur fuel were investigated. The OCC's effects were determined by measuring and comparing selected raw exhaust emissions with and without the platinum-based OCC installed in the exhaust system, with the engine operated at three steady-state modes. It was found that the OCC had no significant effect on oxides of nitrogen (NOX) and nitric oxide (NO) at any mode, but reduced hydrocarbon (HC) emmissions by 60 to 70 percent. The OCC reduced total particulate matter (TPM) levels by 27 to 54 percent, primarily resulting from 53 to 71 percent reductions of the soluble organic fraction (SOF). The OCC increased sulfate (SO42-) levels at two of the three modes (modes 9 and 10), but the overall SO42- contribution to TPM was less than 6 percent at all modes due to the low sulfur level of the fuel.
Technical Paper

Effects of a Ceramic Particle Trap and Copper Fuel Additive on Heavy-Duty Diesel Emissions

1994-10-01
942068
This research quantifies the effects of a copper fuel additive on the regulated [oxides of nitrogen (NOx), hydrocarbons (HC) and total particulate matter (TPM)] and unregulated emissions [soluble organic fraction (SOF), vapor phase organics (XOC), polynuclear aromatic hydrocarbons (PAH), nitro-PAH, particle size distributions and mutagenic activity] from a 1988 Cummins LTA10 diesel engine using a low sulfur fuel. The engine was operated at two steady state modes (EPA modes 9 and 11, which are 75 and 25% load at rated speed, respectively) and five additive levels (0, 15, 30, 60 and 100 ppm Cu by mass) with and without a ceramic trap. Measurements of PAH and mutagenic activity were limited to the 0, 30 and 60 ppm Cu levels. Data were also collected to assess the effect of the additive on regeneration temperature and duration. Copper species collected within the trap were identified and exhaust copper concentrations quantified.
Technical Paper

A Study of the Regeneration Process in Diesel Particulate Traps Using a Copper Fuel Additive

1996-02-01
960136
The goals of this research are to understand the regeneration process in ceramic (Cordierite) monolith traps using a copper fuel additive and to investigate the various conditions that lead to trap regeneration failure. The copper additive lowers the trap regeneration temperature from approximately 500 °C to 375 °C and decreases the time necessary for regeneration. Because of these characteristics, it is important to understand the effect of the additive on regeneration when excessive particulate matter accumulation occurs in the trap. The effects of particulate mass loading on regeneration temperatures and regeneration time were studied for both the controlled (engine operated at full load rated speed) and uncontrolled (trap regeneration initiated at full load rated speed after which the engine was cut to idle) conditions. The trap peak temperatures were higher for the uncontrolled than the controlled regeneration.
Technical Paper

The Effect of Fuel and Engine Design on Diesel Exhaust Particle Size Distributions

1996-02-01
960131
The objective of this research was to obtain diesel particle size distributions from a 1988 and a 1991 diesel engine using three different fuels and two exhaust control technologies (a ceramic particle trap and an oxidation catalytic converter). The particle size distributions from both engines were used to develop models to estimate the composition of the individual size particles. Nucleation theory of the H2O and H2SO4 vapor is used to predict when nuclei-mode particles will form in the dilution tunnel. Combining the theory with the experimental data, the conditions necessary in the dilution tunnel for particle formation are predicted. The paper also contains a discussion on the differences between the 1988 and 1991 engine's particle size distributions. The results indicated that nuclei mode particles (0.0075-0.046 μm) are formed in the dilution tunnel and consist of more than 80% H2O-H2SO4 particles when using the 1988 engine and 0.29 wt% sulfur fuel.
Technical Paper

An Experimental and Computational Study of the Pressure Drop and Regeneration Characteristics of a Diesel Oxidation Catalyst and a Particulate Filter

2006-04-03
2006-01-0266
An experimental and computational study was performed to evaluate the performance of the CRT™ technology with an off-highway engine with a cooled low pressure loop EGR system. The MTU-Filter 1D DPF code predicts the particulate mass evolution (deposition and oxidation) in a diesel particulate filter (DPF) during simultaneous loading and during thermal and NO2-assisted regeneration conditions. It also predicts the pressure drop across the DPF, the flow and temperature fields, the solid filtration efficiency and the particle number distribution downstream of the DPF. A DOC model was also used to predict the NO2 upstream of the DPF. The DPF model was calibrated to experimental data at temperatures from 230°C to 550°C, and volumetric flow rates from 9 to 39 actual m3/min.
Technical Paper

An Advanced 1D 2-Layer Catalyzed Diesel Particulate Filter Model to Simulate: Filtration by the Wall and Particulate Cake, Oxidation in the Wall and Particulate Cake by NO2 and O2, and Regeneration by Heat Addition

2006-04-03
2006-01-0467
A numerical model to simulate the filtration and regeneration performance of catalyzed diesel particulate filters (CPFs) was developed at Michigan Technological University (MTU). The mathematical formulation of the model and some results are described. The model is a single channel (inlet and outlet) representation of the flow while the thermal and catalytic regeneration framework is based on a 2-layer approach. The 2-layer model can simulate particulate matter (PM) oxidation by thermal and ‘catalytic’ means of oxidation with O2. Several improvements were made to this basic model and are described in this paper. A model to simulate PM oxidation by NO2/Temperature entering the particulate filter and oxidizing the PM in the two layers of the PM cake was developed. This model can be used to simulate the performance of filters with catalyst washcoats and uncatalyzed filters placed downstream of diesel oxidation catalysts (DOCs), as in the continuously regenerating traps, CRT's®.
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
X