Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Impact of Ice Formation in Diesel Fuel on Tier 4 Off-Road Engine Performance with High Efficiency Fuel Filtration

2015-09-29
2015-01-2817
The winter of 2013-2014 provided an opportunity to operate off-road vehicles in cold weather for extended time as part of a vehicle/tier 4 diesel engine validation program. An unexpected area of study was the performance of high efficiency, on engine, fuel filters during continuous vehicle operation in cold weather. During the program we observed unexpected premature fuel filter plugging as indicated by an increase in pressure drop across the filter while in service. Field and laboratory testing was completed at John Deere and Donaldson to understand the cause of filter plugging. Although conditions were found where winter fuel additives could cause plugging of high efficiency filters, premature filter plugging occurred even when testing with #1 diesel fuel. This fuel contained no additives and was used at temperatures well above its cloud point.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

2015-09-29
2015-01-2808
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Start of Injection and Spark Timing Effects

2015-09-29
2015-01-2813
The increased availability of natural gas (NG) in the United States (US), and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim is to realize fuel cost savings and reduce harmful emissions, while maintaining durability. This is a potential path to help the US reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe; however, this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Trade-Off Analysis and Systematic Optimization of a Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
While significant progress has been made in recent years to develop hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, the application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel and the operating profiles of most heavy-duty trucks, combine to make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
Technical Paper

Extraction of Liquid Water from the Exhaust of a Diesel Engine

2015-09-29
2015-01-2806
Introducing water in a diesel engine has been known to decrease peak combustion temperatures and decrease NOx emissions. This however, has been limited to stationary and marine applications due to the requirement of a separate water supply tank in addition to the fuel tank, thereby a two-tank system. Combustion of hydrocarbon fuels produce between 1.35 (Diesel) and 2.55 times (Natural Gas) their mass in water. Techniques for extracting this water from the exhaust flow of an engine have been pursued by the United States department of defense (DOD) for quite some time, as they can potentially reduce the burden of supply of drinking water to front line troops in theater. Such a technology could also be of value to engine manufacturers as it could enable water injection for performance, efficiency and emissions benefits without the drawbacks of a two-tank system.
X