Refine Your Search

Topic

Author

Search Results

Technical Paper

Human Perception of Seat Vibration Quality Pilot Study

2021-08-31
2021-01-1068
Driving comfort and automotive product quality are strongly associated with the vibration that is transmitted to the occupants of a vehicle at the points of contact to the human body, including the seat, steering wheel, and pedals. Of these three contact locations, the seats have the most general importance, as all occupants of a vehicle experience seat vibration. Particularly relevant to driving comfort is the way in which vehicle occupants perceive seat vibration, which may be different than expected considering sensor measured vibration levels. Much of the interest in seat vibration has been focused on internal combustion engine powertrain vibration, especially idle vibration. However, electrification of vehicles changes the focus from low frequency idle vibration to higher frequency vibration sources.
Technical Paper

Robust Sensor Fused Object Detection Using Convolutional Neural Networks for Autonomous Vehicles

2020-04-14
2020-01-0100
Environmental perception is considered an essential module for autonomous driving and Advanced Driver Assistance System (ADAS). Recently, deep Convolutional Neural Networks (CNNs) have become the State-of-the-Art with many different architectures in various object detection problems. However, performances of existing CNNs have been dropping when detecting small objects at a large distance. To deploy any environmental perception system in real world applications, it is important that the system achieves high accuracy regardless of the size of the object, distance, and weather conditions. In this paper, a robust sensor fused object detection system is proposed by utilizing the advantages of both vision and automotive radar sensors. The proposed system consists of three major components: 1) the Coordinate Conversion module, 2) Multi level-Sensor Fusion Detection (MSFD) system, and 3) Temporal Correlation filtering module.
Technical Paper

Autonomous Lane Change Control Using Proportional-Integral-Derivative Controller and Bicycle Model

2020-04-14
2020-01-0215
As advanced vehicle controls and autonomy become mainstream in the automotive industry, the need to employ traditional mathematical models and control strategies arises for the purpose of simulating autonomous vehicle handling maneuvers. This study focuses on lane change maneuvers for autonomous vehicles driving at low speeds. The lane change methodology uses PID (Proportional-Integral-Derivative) controller to command the steering wheel angle, based on the yaw motion and lateral displacement of the vehicle. The controller was developed and tested on a bicycle model of an electric vehicle (a Chevrolet Bolt 2017), with the implementation done in MATLAB/Simulink. This simple mathematical model was chosen in order to limit computational demands, while still being capable of simulating a smooth lane change maneuver under the direction of the car’s mission planning module at modest levels of lateral acceleration.
Technical Paper

A Robust Failure Proof Driver Drowsiness Detection System Estimating Blink and Yawn

2020-04-14
2020-01-1030
The fatal automobile accidents can be attributed to fatigued and distracted driving by drivers. Driver Monitoring Systems alert the distracted drivers by raising alarms. Most of the image based driver drowsiness detection systems face the challenge of failure proof performance in real time applications. Failure in face detection and other important part (eyes, nose and mouth) detections in real time cause the system to skip detections of blinking and yawning in few frames. In this paper, a real time robust and failure proof driver drowsiness detection system is proposed. The proposed system deploys a set of detection systems to detect face, blinking and yawning sequentially. A robust Multi-Task Convolutional Neural Network (MTCNN) with the capability of face alignment is used for face detection. This system attained 97% recall in the real time driving dataset collected. The detected face is passed on to ensemble of regression trees to detect the 68 facial landmarks.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

Assessment of Automatic Volume Leveling for Automotive Sound Systems

2013-04-08
2013-01-0162
This paper presents an assessment of competing algorithms for normalizing volume levels between tracks and/or sources in an automotive infotainment system. Portable media players such as smartphones and iPod® devices are extremely popular for listening to music collections or streaming content from the Internet. The lack of normalization is a source of dissatisfaction if the user experiences significant changes in audio level between tracks. Several commercially available algorithms exist to solve this problem. This research includes a double-blind listening test comparing an audio sample processed with the different leveling algorithms to an unprocessed reference. The listener preference rating is recorded and results indicate which algorithm is preferred.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

Automated 3D Printer Bed Clearing Mechanism

2020-04-14
2020-01-1301
The objective of this work was to design an automated bed clearing mechanism for the Anet brand A8 3D printer, which uses Fused Deposition Modeling (FDM) process. This work has been carried out as a capstone course. Many OEMs are focusing on using functional 3D printed parts to replace metal parts that otherwise require complex assemblies or to reduce weight. The concept behind the work presented in this paper was to allow every user to be able to print multiple parts without human interaction. This saves time to load and unload one part at a time. The idea was to develop a universal bed clearing mechanism that can be used for most brands of 3D printers. Upon researching into the many different styles and designs of printers, it became clear that the designs are different and complex to create a universal product. It was decided to aim for the most common style of 3D printers for which easy modeling and testing should be possible.
Technical Paper

Characterization of a Catalytic Converter Internal Flow

2007-10-29
2007-01-4024
This paper includes a numerical and experimental study of fluid flow in automotive catalytic converters. The numerical work involves using computational fluid dynamics (CFD) to perform three-dimensional calculations of turbulent flow in an inlet pipe, inlet cone, catalyst substrate (porous medium), outlet cone, and outlet pipe. The experimental work includes using hot-wire anemometry to measure the velocity profile at the outlet of the catalyst substrate, and pressure drop measurements across the system. Very often, the designer may have to resort to offset inlet and outlet cones, or angled inlet pipes due to space limitations. Hence, it is very difficult to achieve a good flow distribution at the inlet cross section of the catalyst substrate. Therefore, it is important to study the effect of the geometry of the catalytic converter on flow uniformity in the substrate.
Technical Paper

Radiated Noise Prediction of Air Induction Systems Using Filter Seal Modeling and Coupled Acoustic-Structural Simulation Techniques

2007-04-16
2007-01-0253
In this paper, an analytical procedure for prediction of shell radiated noise of air induction systems (AIS) due to engine acoustic excitation, without a prototype and physical measurement, is presented. A set of modeling and simulation techniques are introduced to address the challenges to the analytical radiated noise prediction of AIS products. A filter seal model is developed to simulate the unique nonlinear stiffness and damping properties of air cleaner boxes. A finite element model (FEM) of the AIS assembly is established by incorporating the AIS structure, the proposed filter seal model and its acoustic cavity model. The coupled acoustic-structural FEM of the AIS assembly is then employed to compute the velocity frequency response of the AIS structure with respect to the air-borne acoustic excitations.
Technical Paper

Control Method of Dual Motor-Based Steer-by-Wire System

2007-04-16
2007-01-1149
This paper describes a front road wheel steer-by-wire system with two actuator motors on the rack and pinion assembly to move the road wheels. Dual actuators are used to provide actuator redundancy and to enhance the fault tolerance capability. When one actuator faults or fails, the other actuator is designed to work independently and maintain full system performance. The paper emphasizes control method to implement the motion control for the front road wheel steer-by-wire system with two actuators on the common load. The proposed dual servo synchronization motion control implements the angle tracking for the road wheel reference input by controlling two actuators synchronously and cooperatively. It includes two servo feedback control loops to track the common reference input. The angular position error between two feedback loops is compensated using a synchronized compensator.
Technical Paper

Design Considerations & Characterization Test Methods for Activated Carbon Foam Hydrocarbon Traps in Automotive Air Induction Systems

2007-04-16
2007-01-1429
As OEMs race to build their sales fleets to meet ever more stringent California Air Resources Board (CARB) mobile source evaporative emissions requirements, new technologies are emerging to control pollution. Evaporative emissions emanating from sources up-stream in the induction flow and venting through the ducts of the engine air induction system (EIS) need to be controlled in order classify a salable vehicle as a Partial Zero Emissions Vehicle (PZEV) in the state of California. As other states explore adopting California's pollution control standards, demand for emissions control measures in the induction system is expected to increase. This paper documents some of the considerations of designing an adsorbent evaporative emissions device in to a 2007 production passenger car for the North American and Asian markets. This new evaporative emissions device will be permanently installed in the vehicle's air cleaner cover without requiring service for 150K miles (expected vehicle life).
Technical Paper

Heat Simulation in Lighting

2007-04-16
2007-01-1388
During last 10-15 years we could have seen quite big changes in automotive lighting. The most important changes are: a) plastic materials mostly removed metal and glass material from lighting products raised heat issue of plastics materials b) escalation of competition between lighting suppliers (globalization, merging, …) decrease of time and cost for development of the new product as much as possible
Technical Paper

Model Reference Adaptive Control of a Pneumatic Valve Actuator for Infinitely Variable Valve Timing and Lift

2007-04-16
2007-01-1297
Electro-pneumatic valve actuators are used to eliminate the cam shaft of a traditional internal combustion engine. They are used to control the opening timing, duration, and lift of both intake and exhaust valves. A physics based nonlinear mathematical model called the level one model was built using Newton's law, mass conservation and thermodynamic principles. A control oriented model, the level two model, was created by partially linearizing the level one model for model reference parameter identification. This model reduces computational throughput and enables real-time implementation. A model reference adaptive control system was used to identify the nonlinear parameters that were needed for generating a feedforward control signal. The closed-loop valve lift tracking, valve opening and closing timing control strategies were proposed.
Technical Paper

A Real Time Statistical Method for Engine Knock Detection

2007-04-16
2007-01-1507
The traditional method of engine knock detection is to compare the knock intensity with a predetermined threshold. The calibration of this threshold is complex and difficult. A statistical knock detection method is proposed in this paper to reduce the effort of calibration. This method dynamically calculates the knock threshold to determine the knock event. Theoretically, this method will not only adapt to different fuels but also cope with engine aging and engine-to-engine variation without re-calibration. This method is demonstrated by modeling and evaluation using real-time engine dynamometer test data.
Technical Paper

State Space Formulation by Bond Graph Models for Vehicle System Dynamics

2008-04-14
2008-01-0430
Modeling and simulation of dynamic systems is not always a simple task. In this paper, the mathematical model of a 4 Degree Of Freedom (DOF) ride model is presented using a bond-graph technique with state energy variables. We believe that for the physical model as described in this research, the use of a bond-graph approach is the only feasible solution. Any attempt to use classical methods such as Lagrange equations or Newton's second law, will create tremendous difficulties in the transformation of a set of second order linear differential equations to a set of first order differential equations without violating the existence and the uniqueness of the solution of the differential equations, the only approach is the elimination of the damping of the tires, which makes the model unrealistic. The bond-graph model is transformed to a mathematical model. Matlab is used for writing a computer script that solves the engineering problem.
Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Technical Paper

Numerical Simulation of a Direct-Injection Spark-Ignition Engine with Different Fuels

2009-04-20
2009-01-0325
This paper focuses on the numerical investigation of the mixing and combustion of ethanol and gasoline in a single-cylinder 3-valve direct-injection spark-ignition engine. The numerical simulations are conducted with the KIVA code with global reaction models. However, an ignition delay model mitigates some of the deficiencies of the global one-step reaction model and is implemented via a two-dimensional look-up table, which was created using available detailed kinetics models. Simulations demonstrate the problems faced by ethanol operated engines and indicate that some of the strategies used for emission control and downsizing of gasoline engines can be employed for enhancing the combustion efficiency of ethanol operated engines.
Technical Paper

Humidity Effects on a Carbon Hydrocarbon Adsorber

2009-04-20
2009-01-0873
Because combustion engine equipped vehicles must conform to stringent hydrocarbon (HC) emission requirements, many of them on the road today are equipped with an engine air intake system that utilizes a hydrocarbon adsorber. Also known as HC traps, these devices capture environmentally dangerous gasoline vapors before they can enter the atmosphere. A majority of these adsorbers use activated carbon as it is cost effective and has excellent adsorption characteristics. Many of the procedures for evaluating the adsorbtive performance of these emissions devices use mass gain as the measurand. It is well known that activated carbon also has an affinity for water vapor; therefore it is useful to understand how well humidity must be controlled in a laboratory environment. This paper outlines investigations that were conducted to study how relative humidity levels affect an activated carbon hydrocarbon adsorber.
X