Refine Your Search

Topic

Author

Search Results

Journal Article

Measurement of Oil Film Pressure on Running Continuously Variable Transmission Pulley Part 1: Measurement Using Micro Data Logger System and Thin-Film Sensor

2014-04-01
2014-01-1732
In order to reduce friction and predict wear of the sliding part, it is important to determine the oil film thickness of particular area. A sensor or similar device must be attached to the sliding surface to detect the oil film thickness. However, a sensor could not be attached, due to the lack of space on contact surface, and moreover there was no method to secure the sensor on contact surface at that time. A several-micrometer-thin-film sensor was installed on a sliding surface to attempt measurement, but since the sensor was attached on a contact surface, wear occurred immediately and data was unable to be obtained. To accomplish above issue, we developed a protective layer with excellent wear-resistance that successfully extended the measurement time by protecting the thin-film sensor.
Journal Article

Measurement of Oil Film Pressure on Running Continuously Variable Transmission Pulley - Part 2: Oil Film Thickness Calculation Based on EHL Theory

2014-04-01
2014-01-1731
In order to maintain the performance of push belt Continuously Variable Transmissions (CVT) over a long period of time, it is important to acquire a fundamental understanding of lubrication performance between a pulley and a metal V-belt. This work examined oil film thickness using the contact pressure on a sliding surface of pulley sheave during driving, which was obtained with an uniquely developed measurement technique. The contact between a belt element and a pulley sheave was treated as a group of small elliptical contact zones. The pressure-viscosity characteristics of lubricant were assigned to Reynolds equation with Roelands experimental formula. Also, in order to increase convergence of the calculation, a multigrid method was used. Calculation results indicate that the oil film thickness at a peak contact pressure measured was approximately 0.3-0.4 μm.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Journal Article

Development of a New Two-Motor Plug-In Hybrid System

2013-04-08
2013-01-1476
A highly efficient two-motor plug-in hybrid system is developed to satisfy the global demands of CO2 reduction. This system switches three operation modes, what is called “EV Drive”, “Hybrid Drive” and “Engine Drive”, to maximize fuel efficiency according to the driving condition of the vehicle. Practical plug-in EV (Electric Vehicle) capability is also realized by adding a high-power on-board charger and a high capacity Li-ion battery to the original system. The outlines of the system components including a newly developed Atkinson cycle engine, a highly efficient electric coupled CVT (Continuously Variable Transmission) with built-in motor and generator, an integrated PCU (Power Control Unit) and an exclusive battery for plug-in HEV (Hybrid Electric Vehicle) are described in this paper. In addition to the switching of three driving modes and the efficiency improvement of each device, cooperative control of the hybrid system is introduced.
Journal Article

Prediction of Wear Loss of Exhaust Valve Seat of Gasoline Engine Based on Rig Test Result

2018-04-03
2018-01-0984
The purpose of this research was to predict the amount of wear on exhaust valve seats in durability testing of gasoline engines. Through the rig wear test, a prediction formula was constructed with multiple factors as variables. In the rig test, the wear rate was measured in some cases where a number of factors of valve seat wear were within a certain range. Through these tests, sensitivity for each factor was determined from the measured wear data, and then a prediction formula for calculating the amount of wear was constructed with high sensitivity factors. Combining the wear amount calculation formula with the operation mode of the actual engine, the wear amount in that mode can be calculated. The calculated wear amount showed a high correlation with the wear amount measured in bench tests and the wear amount measured in vehicle tests.
Journal Article

Wear Properties of Car Engine Shaft in Actual Engine Environment

2015-04-14
2015-01-0686
When evaluating the wear properties of slide bearings for car engines, it is a common practice to conduct long-term physical test using a bearing tester for screening purposes according to the revolution speed of the shaft, supply oil temperature and bearing pressure experienced in the actual use of engines. The loading waveform applied depends on the capability of the tester that is loaded, and it is often difficult to apply a loading waveform equivalent to that of actual engines. To design an engine that is more compact or lighter, it is necessary to reduce the dimensions of slide bearings and the distance between bearings. This requires loading tests on a newly designed engine by applying a loading waveform equivalent to that of actual engines to slide bearings and their vicinity before conducting a firing test. We therefore conducted an engine firing test by attaching thin-film sensors to the slide bearing part of the engine and measured the actual load distribution.
Technical Paper

Wear Mechanism in Cummins M-11 High Soot Diesel Test Engines

1998-05-04
981372
The Cummins M-11 high soot diesel engine test is a key tool in evaluating lubricants for the new PC-7 (CH-4) performance category. M-11 rocker arms and crossheads from tests with a wide range of lubricant performance were studied by surface analytical techniques. Abrasive wear by primary soot particles is supported by the predominant appearance of parallel grooves on the worn parts with their widths matching closely the primary soot particle sizes. Soot abrasive action appears to be responsible for removing the protective antiwear film and, thus, abrades against metal parts as well. Subsequent to the removal of the antiwear film, carbide particles, graphite nodules, and other wear debris are abraded, either by soot particles or sliding metal-metal contact, from the crosshead and rocker arm metal surfaces. These particles further accelerate abrasive wear. In addition to abrasive wear, fatigue wear was evident on the engine parts.
Technical Paper

Study of Durability Prediction with Focus on Wear Properties for Multiple Plate Clutches

2007-04-16
2007-01-0240
To increase the durability of multiple-plate clutches used in automatic transmissions, attention was focused on the wear history of the facing material. Measurements have confirmed that correlations can be observed between initial wear and disk contact pressure when the clutch is engaged, and between steady wear and plate temperature. Next, simulation technology was developed to quantify the disk contact pressure and plate temperature. When simulated contact pressure distribution and temperature distribution were used to establish correlations with durability wear, good proportional relationships were found in both cases. It was also found that when clutch specifications and driving conditions were varied, the gradient of the correction also varied, but the correlation remained proportional as long as the same facing material was used. The gradient was ranked as a wear property specific to the facing material.
Technical Paper

Resource-conserving, Heat-resistant Ni-based Alloy for Exhaust Valves

2009-04-20
2009-01-0259
Conventionally, the Ni-based superalloys NCF3015 (30Ni-15Cr) and the high nickel content NCF440 (70Ni-19Cr) (with its outstanding wear resistance and corrosion resistance), have been used as engine exhaust valve materials. In recent years, automobile exhaust gases have become hotter because of exhaust gas regulations and enhanced fuel consumption efficiency. Resource conservation and cost reductions also factor into global environmental challenges. To meet these requirements, NCF5015 (50Ni-15Cr), a new resource-conserving, low-cost Ni-based heat-resistant alloy with similar high-temperature strength and wear resistance as NCF440, has been developed. NCF5015's ability to simultaneously provide wear resistance, corrosion resistance and strength when NCF5015 is used with diesel engines was verified and the material was then used in exhaust valves.
Technical Paper

Verification of Influences of Biodiesel Fuel on Automotive Fuel-line Rubber and Plastic Materials

2010-04-12
2010-01-0915
At present, biodiesel fuels using natural-origin materials are expanding in share, and there are many different kinds. Biodiesel fuel generates organic acid when it deteriorates, so care is needed when evaluating the influence of the fuel on automotive fuel-line materials. A model biodiesel fuel was designed taking into account deterioration of the fuel and mixing of impurities into it. Durability of automotive fuel-line rubber and plastic materials were evaluated by using the model fuel. From the evaluation results, it was found that fluoroelastomer (hereafter referred to as FKM) and polyacetal resin (hereafter referred to as POM) deteriorate depending on specific fuel properties and deterioration state. In this paper, we report evaluating results of biodiesel fuels on the automotive fuel-line rubber and plastic materials, and the importance of biodiesel fuel property management.
Technical Paper

Introduction of a New Method of Solving Wear Problems Caused by the Swing Motion Occurring between the Roller and the Sliding Contact Surface

2010-04-12
2010-01-1055
In an attempt to decrease the amount of CO2 emitted by engines and yet improve engine output power, various approaches to the development of variable valve-lift mechanisms and the application of direct fuel injection and supercharger mechanisms are rapidly gaining popularity. In the case of the swing motion which takes place in variable valve-lift mechanisms, the relative speed between the two components reaches zero at the location where the load is high and the oil film tends to break, thereby leading to wear. Furthermore, the use of a supercharger and a direct injection device generates soot, which promotes further wear. Therefore establishing a reliable method for estimating wear has become a pressing issue. Wear problems caused by the swing motion occur during boundary lubrication, and we have devised a solution for them.
Technical Paper

Prediction of CVT Transmission Efficiency by Metal V-Belt and Pulley Behavior with Feedback Control

2010-04-12
2010-01-0855
A simulation technology has been developed to predict the transmission efficiency of a metal pushing V-belt and pulleys that make up the drive system of a continuously variable transmission (CVT). When a CVT operates in an actual vehicle, pulley thrust pressure is adjusted by feedback control to maintain a speed ratio. This feedback control has been implemented, for the first time, in an existing simulation that predicts the dynamic behavior of a metal V-belt using explicit structural analysis. The new simulation enables stable control of a target speed ratio when appropriate gains are set for each analysis condition.
Technical Paper

Development of Metal Pushing V-Belt for Continuously Variable Transmission - Investigation for Clearance Between Elements, Strength of Element and Strength of Ring Material

2003-03-03
2003-01-0968
HONDA completed research and development of the Metal V-Belt for CVTs in-house for the purpose of reducing the minimum pitch radius. The newly developed belt is essential to the compactness of a CVT and increases the speed ratio range. Increase of ring stress caused by reducing the minimum pitch radius is treated by improvement of element shape, optimizing clearance between elements and between element and ring and improving materials.(1) In this paper, the optimization of clearance between elements, heat treatment of elements and optimization of ring material are described in detail. Optimum total clearance between elements for a virgin belt is defined by test results during operation using a specially engraved gap sensor and a telemeter system. Tolerance and conditions of heat treatment for elements are optimized concerning fatigue strength of the element nose.
Technical Paper

Quantitative Analysis of Leakage Suppression of DLC Coating on Piston Ring

2017-03-28
2017-01-0457
Piston ring wear in gasoline engine induces deterioration of emissions performance due to leakage of blow-by gas, instability of idling caused by reduced compression in combustion chamber, and to generate early degeneration of engine oil. We examined anti-wear performance of DLC coating on piston ring, which had been recently reported as an effective method for improving the abrasion resistance. As a result, wear rate remained low under the condition of DLC existence on sliding surface, but once DLC was worn out completely, wear of the piston ring was accelerated and its life became shorter than piston ring without DLC. In this research, we designed reciprocating test apparatus that operates at much higher velocity range, and characterized the frictional materials of the piston ring and sleeve and the DLC as a protective film, a vapor phase epitaxy (VPE) was actively used as a means to form certain level of convex and concave shape on its surface.
Technical Paper

Prediction of Piston Skirt Scuffing via 3D Piston Motion Simulation

2016-04-05
2016-01-1044
This paper describes the establishment of a new method for predicting piston skirt scuffing in the internal combustion engine of a passenger car. The authors previously constructed and reported a method that uses 3D piston motion simulation to predict piston slap noise and piston skirt friction. However, that simulation did not have a clear index for evaluation of scuffing that involves piston skirt erosion, and it impressed shortage of the predictive accuracy of a scuffing. Therefore, the authors derived a new evaluation index for piston skirt scuffing by actually operating an internal combustion engine using multiple types of pistons to reproduce the conditions under which scuffing occurs, and comparing with the results of calculating the same conditions by piston motion simulation.
Technical Paper

Engine Seizure Monitoring System Using Wear Debris Analysis and Particle Measurement

2016-04-05
2016-01-0888
Several attempts have been reported in the past decade or so which measured the sizes of particles in lubricant oil in order to monitor sliding conditions (1). Laser light extinction is typically used for the measurement. It would be an ideal if only wear debris particles in lubricant oil could be measured. However, in addition to wear debris, particles such as air bubbles, sludge and foreign contaminants in lubricant oil are also measured. The wear debris particles couldn't have been separated from other particles, and therefore this method couldn't have been applied to measurement devices for detection when maintenance service is required and how the wear state goes on. It is not possible to grasp the abnormal wear in real time by the conventional techniques such as intermittent Ferro graphic analysis. In addition, it is no way to detect which particle size to be measured by the particle counter alone.
Technical Paper

Study of Low-Viscosity Engine Oil on Fuel Economy and Engine Reliability

2011-04-12
2011-01-1247
An examination was made on the effect of low-viscosity engine oil on fuel efficiency improvements and engine reliability for the purpose of improving fuel efficiency through the use of select engine oils. Fuel efficiency-improving effects were estimated by measuring friction torque using low-viscosity engine oil. The results show that reducing engine oil viscosity is effective for improving fuel efficiency. In examining engine reliability, attention was paid to the following two aspects which are concerns in practical performance that may arise when engine oil viscosity is reduced. Engine oil consumption Sliding wear at high temperatures Tests and analyses were conducted to develop indexes for engine oil properties that are strongly correlated with each of these two concerns. A strong correlation was found between engine oil consumption and the results of a thermogravimetric analysis, and between high-temperature sliding wear and high-temperature, high-shear viscosity (HTHS).
Technical Paper

Study of Effect of CVT Pulleys on Strength and Transmission Efficiency of Metal Pushing V-belts

2011-04-12
2011-01-1426
In designing CVT pulleys, the effect of the fit clearance of the movable pulleys and their stiffness on the transmission efficiency and strength of the metal pushing V-belt is not necessarily clear. The research discussed in this paper introduced a pulley model that defined the pulleys as elastic bodies to a previously developed technology for the prediction of the transmission efficiency of the belts. As a result, it was found that when the fit clearance is reduced, the transmission efficiency of the belt is increased, and the amplitude of stress on the innermost rings and the element neck section is reduced. In addition, it was found that if pulley stiffness was reduced transmission efficiency was also reduced, and the amplitude of stress on the element neck section increased. This indicated that the fit clearance and the pulley stiffness changed the degree of deflection of the pulleys in the axial direction.
Technical Paper

Temperature Prediction of Actual Contact Portion of the Metal Belt CVT

2018-04-03
2018-01-0122
In a previous study by the authors, austenite (γ phase) formed on the topmost of pulleys after long term operation of continuously variable transmission (CVT) [1]. In general, martensite arising from heat treatment forms on the surface of pulleys and gears. Therefore, the sliding surface has a body-centered cubic (BCC) metal structure, and transformation into and existence of austenite (γ phase) is difficult unless there is a thermal history exceeding the eutectoid point. For the verification of that possibility, it was crucial to obtain temperature variation on the sliding surface. The major problem for such measurements was rotation of parts inside an operating CVT. In this study, uniquely developed measurement system enabled non-contact temperature measurement near the contact portion. Results were substituted to heat conduction equation to predict the temperature at the exact contact portion.
Technical Paper

Study of Self-induced Vibration in an Operating Metal Pushing V-belt CVT

2012-04-16
2012-01-0309
The mechanism of vibration in a metal pushing V-belt was analyzed using a simulation of the dynamic behavior of the belt in order to identify measures in response to unexpected noise occurring during CVT development. The results showed that the unexpected noise originated in self-induced vibration occurring when the elements of the belt moved in the radial direction close to the exit of the drive pulley. This paper will also discuss the realization of a method of reducing the unexpected noise.
X