Refine Your Search

Topic

Author

Search Results

Journal Article

Direct Sound Radiation Testing on a Mounted Car Engine

2014-06-30
2014-01-2088
For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
Technical Paper

An Experimental and Computational Study of Flow Characteristics in Exhaust Manifold and CCC (Close-Coupled Catalyst)

1998-02-23
980128
A combined experimental and computational study of 3-D unsteady compressible flow in exhaust manifold and CCC system was performed to understand the flow characteristics and to improve the flow distribution of pulsating exhaust gases within monolith. An experimental study was carried out to measure the velocity distribution in production exhaust manifold and CCC under engine operating conditions using LDV (Laser Doppler Velocimetry) system. Velocity characteristics were measured at planes 25 mm away from the front surface of first monolith and between two monolithic bricks. To provide boundary conditions for the computational study, velocity fields according to crank angle were also measured at the entrance of exhaust manifold. The comparisons of exhaust gas flow patterns in the junction and mixing pipe between experimental and computational results were made.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

PM Reduction Performance and Regeneration Characteristics of Catalyzed Metal Foam Filters for a 3L Diesel Passenger Vehicle

2007-08-05
2007-01-3456
Exhaust gases of diesel vehicles are considered as a major reason of city air pollutions. The DOC(Diesel Oxidation Catalyst) and DPF(Diesel Particulate Filter) have been used to reduce the emissions of diesel vehicles. The DOC can oxides HC, CO and SOF(Soluble Organic Fraction) in the PM emissions, and the DPFs can filter the most of solid PM, such as carbon particles. As the DPFs, wall flow type ceramic honeycomb filters have been commonly used and now being still advanced. However, the cost and durability of the currently used DPFs are not perfect yet. Metal foam is the one of promising materials for the DPFs due to its cost effectiveness, good thermal conductivity and high mechanical strength. The metal foam can be produced with various pore sizes and strut thickness and finally can be coated with catalytic wash-coats with low cost.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

Experimental Study on the Air Quality of Vehicle’s Cabin by Evaluating CO2 Concentration and Fine Dust on the Actual Road

2009-04-20
2009-01-0536
For a complete automotive HVAC system, it is desirable to keep good air quality control for the interior vehicle cabin. This experimental study for evaluating the CO2 concentration levels in a vehicle cabin was done on the roads in South Korea. Increasing levels of CO2 can cause a passenger to become tired, sleepy and cause headaches or discomfort. The study results shows that CO2 and fine dust concentration is a result of the number of passengers,_driving condition and HVAC user settings. The result from this investigation can be used to establish a development guide for air quality in a vehicle cabin.
Technical Paper

Combustion Process Analysis in a HSDI Diesel Engine Using a Reduced Chemical Kinetics

2004-03-08
2004-01-0108
The combustion characteristics of a HSDI diesel engine were analyzed numerically using a reduced chemical kinetics. The reaction mechanism consisting of 26 steps and 17 species including the Zel'dovich NOx mechanism for the higher hydrocarbon fuel was implemented in the KIVA-3V. The characteristic time scale model was adopted to account for the effects of turbulent mixing on the reaction rates. The soot formation and oxidation processes are represented by Hiroyasu's model and NSC's model. The validation cases include the homogenous fuel/air mixture and the spray combustion in a constant volume chamber. After the validation, the present approach was applied to the analysis of the spray combustion processes in a HSDI diesel engine. The present approach reasonably well predicts the ignition delay, combustion processes, and emission characteristics in the high-pressure turbulent spray flame-field encountered in the practical HSDI diesel engines.
Technical Paper

Numerical Study of Combustion Processes and Pollutant Formation in HSDI Diesel Engines

2004-03-08
2004-01-0126
The Representative Interactive Flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot and NOx formation. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the Eulerian Particle Flamelet Model using the multiple flamelets has been employed. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on turbulence-chemistry interaction.
Technical Paper

Improvement of Fuel Economy and Transient Control in a Passenger Diesel Engine Using LP(Low Pressure)-EGR

2011-04-12
2011-01-0400
Diesel engines are the most commonly used power train of the freight and public transportations in the world. From the viewpoint of global warming restraint, however, reduction of exhaust emissions from the diesel engine is urgent demand. Stringent emission regulations are being proposed with growing concern on NOx, PM and CO2 emissions. Future emission regulations require advanced emission control technologies, such as SCR(Selective Catalytic Reduction), LNT(Lean NOx Trap) and EGR(Exhaust Gas Recirculation). The EGR is a commonly used technique to reduce emission. In this study, a LP-EGR(Low Pressure Exhaust Gas Recirculation) system was investigated to evaluate its potential on emission reduction and fuel economy improvement, especially for a passenger diesel engine. A 3.0ℓ diesel engine equipped with the LP-EGR system was tested using an in-house control algorithm.
Technical Paper

Optimization for Brake Feeling in Vehicle without Brake Noise

2016-09-18
2016-01-1928
Recently, upon customer’s needs for noise-free brake, carmakers are increasingly widely installing damping kits in their braking systems. However, an installation of the damping kits may excessively increase softness in the brake system, by loosening stroke feeling of a brake pedal and increasing compressibility after durability. To find a solution to alleviate this problem, we first conducted experiments to measure compressibility of shims by varying parameters such as adhesive shims (e.g., bonding spec., steel and rubber thickness), piston’s shapes (e.g., different contact areas to the shims), and the numbers of durability. Next, we installed a brake feeling measurement system extended from a brake pedal to caliper. We then compared experimental parameters with brake feeling in a vehicle. Finally, we obtained an optimized level of brake feeling by utilizing the Design for Six Sigma (DFSS).
Technical Paper

The Unified Relationship between Torque and Gear Ratio and Its Application in Multi-Step Automatic Transmissions

2016-04-05
2016-01-1098
The market demands for CO2 reduction and fuel economy have led to a variety of new gear set concepts of automatic transmissions with 4 planetary gear sets and 6 shift elements in recent years. Understanding the relationship between the torque of clutch and brake and gear ratio in the design stage is very important to assess new gear set concepts and to set up the control strategy for enhancing shift quality and to reduce the heat generation of clutch and brake. In this paper, a new systematic approach is used to unify the relationship between torque and gear ratio during the gear shift for all multi-step planetary automatic transmissions. This study describes the unified concept model with a lumped inertia regardless of the specific transmission layout and derives the principal unified relationship equations using torque and energy analysis, which prove that the sum of brake torque is always gear ratio -1 in every in-gear.
Technical Paper

Influence of Pilot Injection on Combustion Characteristics and Emissions in a DI Diesel Engine Fueled with Diesel and DME

2011-08-30
2011-01-1958
This work experimentally investigates how the dwell time between pilot injection and main injection influences combustion characteristics and emissions (NOx, CO, THC and Smoke) in a single-cylinder DI diesel engine. Additionally, results from diesel injection are compared with those shown in dimethyl ether (DME) injection under the identical injection strategy to demonstrate the sensitivity of the combustion characteristics and emissions to changes of the fuel type. Two fuel injection systems are applied for this experiment due to the differences of fuel characteristic with regard to physical and chemical properties. The injection strategy is accomplished by varying the dwell time (10°CA, 16°CA and 22°CA) between injections at five main injection timings (-4°CA aTDC, -2°CA aTDC, TDC, 2°CA aTDC and 4°CA aTDC). It was found that pilot injection offers good potential to lower the heat-release rate with reduced pressure traces regardless of the dwell time between injections and fuel type.
Technical Paper

Evaluation of Time-Resolved Nano-Particle and THC Emissions of Wall-Guided GDI Engine

2011-10-06
2011-28-0022
A nano-sized PM and THC emission characteristics were investigated according to the fuel injection strategy such as a pressure and timing in the GDI engine. On the part-load condition, the particulate emissions exhibited a strong sensitivity to the injection timing. The fuel injection pressure also had a great association with the nano-particles and THC. A size of PM exhausted from the GDI engine located near 10nm on the part-load. In contrast, accumulation mode particles within 60 - 80nm mainly exhausted during the cold transient start phase. Increment of fuel injection pressure positively affected on the nano-particle and THC emissions during the start of the engine, as well.
Technical Paper

Influence of the Injector Geometry at 250 MPa Injection in a Light-Duty Diesel Engine

2017-03-28
2017-01-0693
This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.
Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Technical Paper

A Comparative Study of Non-Asbestos Organics vs. Low Steel Lomets for Humidity Sensitivity

2012-09-17
2012-01-1788
Non-Asbestos Organic (NAO) disc pads and Low Steel Lomet disc pads were subjected to high and low humidity conditions to discover how humidity affects these two classes of formulations for physical properties, friction, wear and noise characteristics. The 2 classes of formulations show similarities and differences in response to increasing humidity. The humidity effect on deformation of the surface microstructure of the gray cast iron disc is also investigated. Humidity implications for pad quality control and brake testing are discussed.
Technical Paper

New 1.4ℓ SI Engine Development with the Aluminum Thermal Spray Coated Counter Spiny Thin-Wall Cast Iron Liner

2013-10-14
2013-01-2641
For the lightweight and compact cylinder block, new cast iron liner was developed, which has counter spiny form on the out side of the liner. Additionally, the outer surface was spray-coated with Aluminum in order to enhance the heat conductivity and to increase the grip force between the liner and the block. Without any redesign of cylinder block or crankshaft, the displacement of the engine could be increased from 1.25ℓ to 1.4ℓ by adapting this new liner only. This liner enabled to expand the engine displacement without both great dimension changes and production facility changes.
Technical Paper

Strength Analysis and Fatigue Life Prediction of an Extra Large Dump Truck Deck and Subframe

2013-04-08
2013-01-1211
An engineering strategy to develop a new 27-ton dump truck is introduced in the process of design and analysis. Main engineering concerns in development of the new dump truck are focused on reducing weight as much as 180kg without deteriorating structural strength and fatigue life of its upper body - deck and subframe. To achieve this goal, a stress analysis and a fatigue life prediction based on CAE technique are employed at the early stage of design process. A finite element model of the full vehicle was constructed for the strength analysis. Then the fatigue life was predicted through the strength analysis and an S-N curve of high strength steel. The S-N curve for welded structures made of high strength steel was used along with a prototype vehicle's endurance test in order to set strength targets. As a result, the upper body was successfully developed without any fatigue issues.
Technical Paper

Vehicle Cabin Air Quality with Fractional Air Recirculation

2013-04-08
2013-01-1494
A fractional recirculation of cabin air was proposed and studied to improve cabin air quality by reducing cabin particle concentrations. Vehicle tests were run with differing number of passengers (1, 2, 3, and 4), four fan speed settings and at 20, 40, and 70 mph. A manual control was installed for the recirculation flap door so different ratios of fresh air to recirculated air could be used. Full recirculation is the most efficient setting in terms of thermal management and particle concentration reduction, but this causes elevated CO₂ levels in the cabin. The study demonstrated cabin CO₂ concentrations could be controlled below a target level of 2000 ppm at various driving conditions and fan speeds with more than 85% of recirculation. The proposed fractional air recirculation method is a simple yet innovative way of improving cabin air quality. Some energy saving is also expected, especially with the air conditioning system.
X