Refine Your Search

Topic

Search Results

Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Journal Article

A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions

2008-04-14
2008-01-1066
A detailed comparison of cylinder pressure derived combustion performance and engine-out emissions is made between an all-metal single-cylinder light-duty diesel engine and a geometrically equivalent engine designed for optical accessibility. The metal and optically accessible single-cylinder engines have the same nominal geometry, including cylinder head, piston bowl shape and valve cutouts, bore, stroke, valve lift profiles, and fuel injection system. The bulk gas thermodynamic state near TDC and load of the two engines are closely matched by adjusting the optical engine intake mass flow and composition, intake temperature, and fueling rate for a highly dilute, low temperature combustion (LTC) operating condition with an intake O2 concentration of 9%. Subsequent start of injection (SOI) sweeps compare the emissions trends of UHC, CO, NOx, and soot, as well as ignition delay and fuel consumption.
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

2007-10-29
2007-01-4075
Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Characteristics of Droplet and Icing Formation of an injector for Liquid Phase LPG Injection System

2007-07-23
2007-01-2050
The use of clean gaseous fuel in automotive engines has been continuously increased in order to meet the reinforcing emission regulations and to efficiently utilize limited natural resources. Since the liquid phase LPG injection (LPLI) system has an advantage of higher power and lower emission characteristics than the mixer type fuel supply system, many studies and applications have been conducted. However, the heat extraction, due to the evaporation of liquid LPG fuel, causes not only a dropping of LPG fuel but also icing phenomenon that is a frost of moisture in the air around the nozzle tip. Because both lead to a difficulty in the control of accurate air fuel ratio, it can result in poor engine performance and a large amount of HC emissions. The main objective of this study is to examine the characteristics of icing phenomenon and also aims to improve it through the use of anti-icing injection tip. An experimental investigation was carried out on the bench test rig in this study.
Technical Paper

PM Reduction Performance and Regeneration Characteristics of Catalyzed Metal Foam Filters for a 3L Diesel Passenger Vehicle

2007-08-05
2007-01-3456
Exhaust gases of diesel vehicles are considered as a major reason of city air pollutions. The DOC(Diesel Oxidation Catalyst) and DPF(Diesel Particulate Filter) have been used to reduce the emissions of diesel vehicles. The DOC can oxides HC, CO and SOF(Soluble Organic Fraction) in the PM emissions, and the DPFs can filter the most of solid PM, such as carbon particles. As the DPFs, wall flow type ceramic honeycomb filters have been commonly used and now being still advanced. However, the cost and durability of the currently used DPFs are not perfect yet. Metal foam is the one of promising materials for the DPFs due to its cost effectiveness, good thermal conductivity and high mechanical strength. The metal foam can be produced with various pore sizes and strut thickness and finally can be coated with catalytic wash-coats with low cost.
Technical Paper

Knock in Spark-Ignition Engines: End-Gas Temperature Measurements Using Rotational CARS and Detailed Kinetic Calculations of the Autoignition Process

1997-05-01
971669
Cycle-resolved end-gas temperatures were measured using dual-broadband rotational CARS in a single-cylinder spark-ignition engine. Simultaneous cylinder pressure measurements were used as an indicator for knock and as input data to numerical calculations. The chemical processes in the end-gas have been analysed with a detailed kinetic mechanism for mixtures of iso-octane and n-heptane at different Research Octane Numbers (RON'S). The end-gas is modelled as a homogeneous reactor that is compressed or expanded by the piston movement and the flame propagation in the cylinder. The calculated temperatures are in agreement with the temperatures evaluated from CARS measurements. It is found that calculations with different RON'S of the fuel lead to different levels of radical concentrations in the end-gas. The apperance of the first stage of the autoignition process is marginally influenced by the RON, while the ignition delay of the second stage is increased with increasing RON.
Technical Paper

Investigation of End-Gas Temperature and Pressure Increases in Gasoline Engines and Relevance for Knock Occurrence

1997-05-01
971671
A detailed analysis of the end-gas temperature and pressure in gasoline engines has been performed. This analysis leads to a simplified zero-dimensional model, that considers both, the compression and the expansion of the end-gas by the piston movement, and the compression by the flame front. If autoignition occurs in the end-gas the sudden rise of the pressure and the heat release is calculated. The rate form of the first law of thermodynamics for a control volume combined with the mass conservation equation for an unsteady and a uniform-flow process are applied. The heat of formation in the end-gas due to the chemical activity has been taken into account. In addition, a chemical kinetic model has been applied in order to study the occurrence of autoignition and prediction of knock.
Technical Paper

Detailed Heat Release Analyses with Regard to Combustion of RME and Oxygenated Fuels in an HSDI Diesel Engine

2007-04-16
2007-01-0627
Experiments on a modern DI Diesel engine were carried out: The engine was fuelled with standard Diesel fuel, RME and a mixture of 85% standard Diesel fuel, 5% RME and 10% higher alcohols under low load conditions (4 bar IMEP). During these experiments, different external EGR levels were applied while the injection timing was chosen in a way to keep the location of 50% heat release constant. Emission analysis results were in accordance with widely known correlations: Increasing EGR rates lowered NOx emissions. This is explained by a decrease of global air-fuel ratio entailing longer ignition delay. Local gas-fuel ratio increases during ignition delay and local combustion temperature is lowered. Exhaust gas analysis indicated further a strong increase of CO, PM and unburned HC emissions at high EGR levels. This resulted in lower combustion efficiency. PM emissions however, decreased above 50% EGR which was also in accordance with previously reported results.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

A New Diesel Particulate Filter Using a Metal Foam Filter Combined with Electrostatic Precipitation Mechanism

2007-04-16
2007-01-1267
Filtration studies about the metal foam filters combined with electrostatic precipitation, which can be used as a new DPF device, have been performed. Filtration efficiency of the metal foam filter is significantly low because most particles are penetrated through the large filter-pores. However the efficiency was considerably improved by forming a high electric field on the filter surface. The pressure drop was not significantly increased by the particle deposition because the particles do not completely clog the filter pores.
Technical Paper

Combustion and Emission Modeling for a Direct Injection Diesel Engine

2004-03-08
2004-01-0104
In order to improve the predicting capability of KIVA-3V code for a diesel engine, various numerical models were reviewed. From the comparison of TAB, wave and χ - square distribution models for atomization of a liquid fuel jet, it was found that the wave model was most suitable for predicting a diesel spray because of proper breakup length. The high pressure evaporation model, which considered the air in a combustion chamber as a real gas, predicted earlier ignition about 0.7 °CA than the low pressure model. For the diesel ignition, the Hardenberg model predicted shorter ignition delay than the Shell model and measurements, and the Hardenberg model showed the spatially uniform ignition. For soot emission, the phenomenological models suggested by Foster, Belardini and Hiroyasu were studied. The Hiroyasu model could be used effectively for the prediction of soot emission although it did not provide detailed information on soot formation.
Technical Paper

Boosting for High Load HCCI

2004-03-08
2004-01-0940
Homogeneous Charge Compression Ignition (HCCI) holds great promises for good fuel economy and low emissions of NOX and soot. The concept of HCCI is premixed combustion of a highly diluted mixture. The dilution limits the combustion temperature and thus prevents extensive NOX production. Load is controlled by altering the quality of the charge, rather than the quantity. No throttling together with a high compression ratio to facilitate auto ignition and lean mixtures results in good brake thermal efficiency. However, HCCI also presents challenges like how to control the combustion and how to achieve an acceptable load range. This work is focused on solutions to the latter problem. The high dilution required to avoid NOX production limits the mass of fuel relative to the mass of air or EGR. For a given size of the engine the only way to recover the loss of power due to dilution is to force more mass through the engine.
Technical Paper

Effects of Stratified EGR on the Performance of a Liquid Phase LPG Injection Engine

2004-03-08
2004-01-0982
Exhaust gas recirculation (EGR) and lean burn utilize the diluents into the engine cylinder to control combustion leading to enhanced fuel economy and reduced emissions. However, the occurrence of excessive cyclic variation with high diluent rates, brings about an undesirable combustion instability within the engine cylinder resulting in the deterioration of both engine performance and emissions. Proper stratification of mixture and diluents could improve the combustion stability under high diluent environment. EGR stratification within the cylinder was made by adopting a fast-response solenoid valve in the midst of EGR line and controlling its timing and duty. With EGR in both homogeneous mode and stratified mode, in-cylinder pressure and emissions were measured. The thermodynamic heat release analysis showed that the burning duration was decreased in case of stratified EGR. It was found that the stratification of EGR hardly affected the emissions.
Technical Paper

Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel

2001-03-05
2001-01-0651
Although there seems to be a consensus regarding the low emission potential of DME, there are still different opinions about why the low NOx emissions can be obtained without negative effects on thermal efficiency. Possible explanations are: The physical properties of DME affecting the spray and the mixture formation Different shape and duration of the heat release in combination with reduced heat losses In this paper an attempt is made to increase the knowledge of DME in relation to diesel fuel with respect to heat release and NOx formation. The emphasis has been to create injection conditions as similar as possible for both fuels. For that purpose the same injection system (CR), injection pressure (270 bar), injection timing and duration have been used for the two fuels. The only differences were the diameters of the nozzle holes, which were chosen to give the same fuel energy supply, and the physical properties of the fuels.
Technical Paper

Reacting Boundary Layers in a Homogeneous Charge Compression Ignition (HCCI) Engine

2001-03-05
2001-01-1032
An experimental and computational study of the near-wall combustion in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted by applying laser based diagnostic techniques in combination with numerical modeling. Our major intent was to characterize the combustion in the velocity- and thermal boundary layers. The progress of the combustion was studied by using fuel tracer LIF, the result of which was compared with LDA measurements of the velocity boundary layer along with numerical simulations of the reacting boundary layer. Time resolved images of the PLIF signal were taken and ensemble averaged images were calculated. In the fuel tracer LIF experiments, acetone was seeded into the fuel as a tracer. It is clear from the experiments that a proper set of backgrounds and laser profiles are necessary to resolve the near-wall concentration profiles, even at a qualitative level.
Technical Paper

The Influence of a Late In-Cylinder Air Injection on In-Cylinder Flow Measured with Particle Image Velocimetry (PIV)

2001-09-24
2001-01-3492
During development of an air assisted, direct injection combustion system, it was found that an air pulse during the late part of compression stroke significantly shortened the combustion duration and extended the lean limits of the engine. The effect of an injection of pure air through an air assist direct injector was studied with Particle Image Velocimetry, PIV. Results showed that an air pulse during the compression stroke significantly speeded up in-cylinder velocities, which also was showed in the heat release analysis. A system to use low density seeding particles was developed and is presented in the paper.
Technical Paper

Flame Propagation Characteristics in a Heavy Duty LPG Engine with Liquid Phase Port Injection

2002-05-06
2002-01-1736
Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean burn operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean burn performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using a UV intensified high-speed CCD camera. Concepts of flame area speed, in addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics.
Technical Paper

Qualitative Laser-Induced Incandescence Measurements of Particulate Emissions During Transient Operation of a TDI Diesel Engine

2001-09-24
2001-01-3574
Laser-induced incandescence (LII) is a sensitive diagnostic technique capable of making exhaust particulate-matter measurements during transient operating conditions. This paper presents measurements of LII signals obtained from the exhaust gas of a 1.9-L TDI diesel engine. A scanning mobility particle sizer (SMPS) is used in fixed-size mode to obtain simultaneous number concentration measurements in real-time. The transient studies presented include a cranking-start/idle/shutdown sequence, on/off cycling of EGR, and rapid load changes. The results show superior temporal response of LII compared to the SMPS. Additional advantages of LII are that exhaust dilution and cooling are not required, and that the signal amplitude is directly proportional to the carbon volume fraction and its temporal decay is related to the primary particle size.
Technical Paper

Performance and Emissions of an 11L LPG MPI Engine for City Buses

2002-03-04
2002-01-0448
An 11L heavy duty LPG MPI engine has been developed using the liquid phase LPG injection system, which is one of the next generation LPG fueling technologies, since the LPG MPI engine can achieve the higher power and efficiency, and lower exhaust emissions than the conventional mixer type system. Two prototypes - a natural aspiration(NA) engine and a turbocharged inter-cooler(TCI) engine - were developed in this work and tested to measure the performance and emissions. For a NA type engine, in order to achieve the low emissions, the stoichiometric air/fuel ratio was adapted with a three-way catalytic converter. Whereas, for a TCI type, the lean burn technology was introduced to minimize the thermal loading due to an increase of the engine power. The results in this work demonstrated that the LPG MPI engines have the higher engine performance and lower exhaust emissions than the base diesel engine.
Technical Paper

Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without EGR

2002-03-04
2002-01-0239
SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions-releasing moderate amounts of heat-transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas-by low temperature chemistry-between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modeling of the end-gas reactions.
X