Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Inhibition of Biofilm Formation on the Service and Performance Heat Exchanger by Quorum Sensing Inhibition

2007-07-09
2007-01-3143
Shortly after installation of the service and performance heat exchanger (SPCU HX) in 2001, samples collected from the coolant fluid indicated the presence of nickel accompanied by a subsequent decrease in phosphate concentration along with a high microbial load. When the SPCU HX was replaced and evaluated post-flight, it was expected that the heat exchanger would have significant biofilm and corrosion present given the composition of the coolant fluid; however, there was no evidence of either. Early results from two experiments imply that the heat exchanger materials themselves are inhibiting biofilm formation. This paper discusses the results of one set of experiments and puts forward the inhibition of quorum sensing as a possible mechanism for the lack of biofilm formation.
Technical Paper

Early Results of an Integrated Water Recovery System Test

2001-07-09
2001-01-2210
The work presented in this paper summarizes the early results of an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The system design and the results of the first two months of operation are presented. The overall objective of this test is to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem is designed for operation in microgravity. The primary treatment system consists of a biological system for organic carbon and ammonia removal. Dissolved solids are removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis is used for polishing of the effluent water stream. The wastewater stream consists of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Design of an Ultrafiltration/Reverse Osmosis Prototype Subsystem for the Treatment of Spacecraft Wastewaters

1995-07-01
951738
Long duration missions in space will require regenerative processes to recover water for crew reuse. Membrane processes are attractive as a primary processor in water recovery systems (WRS) because of their design simplicity, low specific energy requirements, small size, and high water recovery. However, fouling has historically been regarded as a disadvantage of membrane-based processes. This fouling is often caused by micelle buildup on the membrane surface by high-molecular-weight organics (e.g., from soaps and laundry detergents). This paper describes a two-stage fouling-resistant ultrafiltration (UF)/reverse osmosis (RO) prototype subsystem, which was designed and constructed for a WRS in the Life Support Systems Integration Facility (LSSIF) at NASA Johnson Space Center (NASA/JSC). The first stage of the subsystem is a tube-side-feed hollow-fiber UF module that removes contaminants that tend to foul spiral-wound modules.
X