Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

The Walkback Test: A Study to Evaluate Suit and Life Support System Performance Requirements for a 10 Kilometer Lunar Traverse in a Planetary Suit

2007-07-09
2007-01-3133
As planetary suit and planetary life support systems develop, specific design inputs for each system relate to a presently unanswered question concerning operational concepts: What distance can be considered a safe walking distance for a suited crew member exploring the surface of the Moon to ‘walkback’ to the habitat in the event of a rover breakdown, taking into consideration the planned extravehicular activity (EVA) tasks as well as the possible traverse back to the habitat? It has been assumed, based on Apollo program experience, that 10 kilometers (6.2 mi) will be the maximum EVA excursion distance from the lander or habitat to ensure the crew member's safe return to the habitat in the event of a rover failure. To investigate the feasibility of performing a suited 10 km walkback, NASA-JSC assembled a multi-disciplinary team to design and implement the ‘Lunar Walkback Test’.
Technical Paper

Virtual Human Modeling for Manufacturing and Maintenance

1998-04-28
981311
Deneb's Interactive Graphic Robot Instruction Progam (IGRIP) and Envision software packages with the Ergonomic analysis option enabled were used for manufacturing process analysis and maintainability / human factors design evaluation in the Lockheed Martin Tactical Aircraft Systems - Fort Worth facility. The initial objective of both the manufacturing and maintainability engineering community was to validate the use of ergonomic modeling and simulation tools in an effort to gain acceptance of this new technology. Each discipline selected an existing operation to baseline the validation. Manufacturing selected the F-16 vertical fin as it is assembled from detail parts into a complete assembly, ready to be mated to the aircraft. Maintainability selected the removal of the Expanded Data Entry Electronics Unit (EXDEEU) located behind the ejection seat of the F-16 aircraft.
Technical Paper

Lunar-Mars Life Support Test Project, Phase II: Human Factors and Crew Interactions

1997-07-01
972415
Phase II of the Lunar-Mars Life Support Test Project was conducted in June and July of 1996 at the NASA Johnson Space Center. The primary objective for Phase II was to develop and test an integrated human life support system capable of sustaining a crew of four for 30 days in a closed chamber. The crew was continuously present inside a chamber throughout the 30-day test. The objective of this paper is to describe crew interactions and human factors for the test. Crew preparations for the test included training and familiarization of chamber systems and accommodations, and medical and psychological evaluations. During the test, crew members provided metabolic loads for the life support systems, performed maintenance on chamber systems, and evaluated human factors inside the chamber. Overall, the four crew members found the chamber to be comfortable for the 30-day test.
Technical Paper

First Astronaut - Rover Interaction Field Test

2000-07-10
2000-01-2482
The first ever Astronaut - Rover (ASRO) Interaction Field Test was conducted successfully on February 22-27, 1999, in Silver Lake, Mojave Desert, California in a representative surface terrain. This test was a joint effort between the NASA Ames Research Center, Moffett Field, California and the NASA Johnson Space Center, Houston, Texas to investigate the interaction between humans and robotic rovers for potential future planetary surface exploration. As prototype advanced planetary surface space suit and rover technologies are being developed for human planetary surface exploration, it is desirable to better understand the interaction and potential benefits of an Extravehiclar Activity (EVA) crewmember interacting with a robotic rover. This interaction between an EVA astronaut and a robotic rover is seen as complementary and can greatly enhance the productivity and safety of surface excursions.
X