Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Effect of Charge Non-uniformity on Heat Release and Emissions in PCCI Engine Combustion

2006-04-03
2006-01-1363
Homogeneous Charge Compression Ignition (HCCI) engines are currently of great interest as a future alternative to Diesel and Spark Ignition engines because of HCCI's potential to achieve high efficiency with very low NOx emissions. However, significant technical barriers remain to practical implementation of HCCI engines: difficult-to-control combustion, low power density, rapid pressure rise, and high hydrocarbon and carbon monoxide emissions. To overcome some of these barriers, operational strategies that involve relaxing the constraint of truly “homogeneous” HCCI combustion have been studied. The phrase “Premixed Charge Compression Ignition” or “PCCI” combustion can be used to describe this class of combustion processes, in which combustion occurs similarly to HCCI engines as a non-mixing controlled, chemical kinetics dominated, auto-ignition process, but the fuel, air, and residual gas mixture need not be homogeneous.
X