Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Water Injection as an Enabler for Increased Efficiency at High-Load in a Direct Injected, Boosted, SI Engine

2017-03-28
2017-01-0663
In a Spark-Ignited engine, there will come a point, as load is increased, where the unburned air-fuel mixture undergoes auto-ignition (knock). The onset of knock represents the upper limit of engine output, and limits the extent of engine downsizing / boosting that can be implemented for a given application. Although effective at mitigating knock, requiring high octane fuel is not an option for most markets. Retarding spark timing can extend the high load limit incrementally, but is still bounded by limits for exhaust gas temperature, and spark retard results in a notable loss of efficiency. Likewise, enriching the air-fuel mixture also decreases efficiency, and has profound negative impacts on engine out emissions. In this current work, a Direct-Injected, Boosted, Spark-Ignited engine with Variable Valve Timing was tested under steady state high load operation. Comparisons were made among three fuels; an 87 AKI, a 91 AKI, and a 110 AKI off-road only race fuel.
Technical Paper

Root Cause Identification and Methods of Reducing Rear Window Buffeting Noise

2007-05-15
2007-01-2402
Rear Window Buffeting (RWB) is the low-frequency, high amplitude, sound that occurs in many 4-door vehicles when driven 30-70 mph with one rear window lowered. The goal of this paper is to demonstrate that the mechanisms of RWB are similar to that of sun roof buffeting and to describe the results of several actions suspected in contributing to the severity of RWB. Finally, the results of several experiments are discussed that may lend insight into ways to reduce the severity of this event. A detailed examination of the side airflow patterns of a small Sport Utility Vehicle (SUV) shows these criteria exist on a small SUV, and experiments to modify the SUV airflow pattern to reduce RWB are performed with varying degrees of success. Based on the results of these experiments, design actions are recommended that may result in the reduction of RWB.
Technical Paper

Performance Evaluation of a Semi-Active Magnetorheological Mount

2008-04-14
2008-01-0429
The paper presents the design and control aspects of a magnetorheological (MR) fluid based mount. The proposed design yields a high static stiffness and a low dynamic stiffness in the working frequency range of the mount, enhancing the vibration isolation capabilities of the mount compared to existing hydraulic mounts. Vertical vibrations, namely displacement/force transmissibility, can be isolated or significantly reduced, in real time, by controlling the fluid yield stress through an applied electric current. The mount governing equations are derived and the effectiveness of the mount is evaluated for two cases: low frequency-high displacement and at high frequency-low displacement. These cases correspond to the operation of the mount in squeeze mode and in flow mode, respectively. Preliminary results on the implementation of a skyhook control strategy are also presented.
Technical Paper

Comparison of a Hydraulic Engine Mount to a Magnetorheological Engine Mount

2010-10-05
2010-01-1910
A comparison between a hydraulic engine mount and a mixed mode magnetorheological (MR) fluid engine mount is presented. MR fluid is a smart material that changes viscosity in the presence of a magnetic field. In other words, without the presence of a magnetic field, the fluid is classified as a Newtonian fluid, however; with the presence of a magnetic field, the fluid becomes classified as a Bingham plastic. The working modes of the MR mount are squeeze and flow. Hydraulic mounts were developed to address the conflicting requirements of the engine vibration profile. The engine vibration profile can be classified as large displacement in the low frequency range and small displacement in the high frequency range. The hydraulic mount used in this study is an as received OEM mount. The elastomeric top and bottom of the hydraulic mount were used to create the MR mount. In the paper, the advantages and disadvantages of each mount are discussed in detail.
Technical Paper

Analysis and Control of Displacement Transmissibility and Force Transmissibility for a Two DOF Model Based on Quarter Car Concept using a Mixed Mode Magnetorheological Fluid Mount

2010-10-05
2010-01-1911
The chassis are subject to both road profile and engine or pump/motor vibration when a vehicle is moving on the road. The suspension is developed to reduce the effect of the road conditions to the chassis. The vibration from engine or pump/motor of hydraulic hybrid vehicles (HHV) will be also transmitted to the chassis and needs to be isolated. A mixed mode magnetorheological (MR) fluid mount is presented to isolate force vibration for a two degree of freedom (DOF) model based on quarter car concept. The MR fluid mount is designed to work in flow mode and squeeze mode separately and simultaneously. The skyhook control for the MR fluid mount is also been designed and simulated. Both displacement transmissibility and force transmissibility for each mode and for combined modes have been obtained. These simulation results present a basis for designing a more effective controller to control both the displacement transmissibility and force transmissibility.
Technical Paper

Investigation of Multi-Hole Impinging Jet High Pressure Spray Characteristics under Gasoline Engine-Like Conditions

2016-04-05
2016-01-0847
Impingement of jet-to-jet has been found to give improved spray penetration characteristics and higher vaporization rates when compared to multi-hole outwardly injecting fuel injectors which are commonly used in the gasoline engine. The current work studies a non-reacting spray by using a 5-hole impinging-jet style direct-injection injector. The jet-to-jet collision induced by the inwardly opening nozzles of the multi-hole injector produces rapid and short jet breakup which is fundamentally different from how conventional fuel injectors operate. A non-reacting spray study is performed using a 5-hole impinging jet injector and a traditional 6-hole Bosch Hochdruck-Einspritzventil (HDEV)-5 gasoline direct-injection (GDI) injector with gasoline as a fuel injected at 172 bar pressure with ambient temperature of 653 K and 490 K and ambient pressure of 37.4 bar and 12.4 bar.
Technical Paper

Numerical Simulations for Spray Characterization of Uneven Multiple Jet-to-Jet Impingement Injectors

2016-04-05
2016-01-0840
Spray structure has a significant effect on emissions and performance of an internal combustion engine. The main objective of this study is to investigate spray structures based on four different multiple jet impingement injectors. These four different multiple jet-to-jet impingement injectors include 1). 4-hole injector (Case 1), which has symmetric inwardly opening nozzles; 2). 5-1-hole (Case 2); 3). 6-2-hole (Case 3); and 4). 7-3-hole (Case 4) which corresponding to 1, 2, 3 numbers of adjacent holes blocked in a 5-hole, 6-hole, and 7-hole symmetrical drill pattern, respectively. All these configurations are basically 4-holes but with different post collision spray structure. Computational Fluid Dynamics (CFD) work of these sprays has been performed using an Eulerian-Lagrangian modelling approach.
Technical Paper

Spray Characterization in a DISI Engine During Cold Start: (1) Imaging Investigation

2006-04-03
2006-01-1004
Spray angle and penetration length data were taken under cold start conditions for a Direct Injection Spark Ignition engine to investigate the effect of transient conditions on spray development. The results show that during cold start, spray development depends primarily on fuel pressure, followed by Manifold Absolute Pressure (MAP). Injection frequency had little effect on spray development. The spray for this single hole, pressure-swirl fuel injector was characterized using high speed imaging. The fuel spray was characterized by three different regimes. Regime 1 comprised fuel pressures from 6 - 13 bar, MAPs from 0.7 - 1 bar, and was characterized by a large pre-spray along with large drop sizes. The spray angle and penetration lengths were comparatively small. Regime 2 comprised fuel pressures from 30 - 39 bar and MAPs from 0.51 - 0.54 bar. A large pre-spray and large drop sizes were still present but reduced compared to Regime 1.
Technical Paper

NUTRIENT DELIVERY TESTBED-1: DESIGN OF A FLIGHT EXPERIMENT FOR ASSESSING NUTRIENT DELIVERY SYSTEM EFFECTIVENESS UNDER μ-GRAVITY CONDITIONS

1995-07-01
951474
Suitable and effective nutrient delivery systems will be required for both long-duration studies of plant growth and for implementation of bioregenerative life support technologies involving crop production in closed micro-gravity environments. Such environments are anticipated onboard a Space Station. The development of such systems hinges on acquiring the scientific and engineering knowledge necessary to design for micro-gravity operations. We have completed the preliminary design of a flight experiment called the Nutrient Delivery Testbed-1 (NDT-1) which will provide a substantial amount of information about the behavior of such systems in the space environment. The NDT-1 package includes a computer control subsystem, two motor-driven nutrient solution reservoirs, a nutrient solution composition monitoring subsystem, a solution sampling subsystem, three different nutrient delivery systems, and a plant surrogate.
Technical Paper

Lockheed's Controlled Ecological Life Support System Test Bed (CTB)

1995-07-01
951710
Regenerative life support is considered a key enabling technology for the human exploration of space. Without regeneration, the cost of supplying the materials necessary to sustain human life escalates so rapidly that manned space flight becomes uneconomical for all but short, near-Earth missions. One of the methods for providing regenerative life support utilizes a Controlled Ecological Life Support System, or CELSS. To accomplish this regeneration, the CELSS must incorporate technologies for food production, food processing, atmospheric revitalization, water purification, trace contaminant control, and waste processing. Many experiments have been conducted to characterize the performance of individual CELSS subsystems (e.g., plant growth, waste processing). However, very little research has been done to define the performance and operational aspects of CELSS technology at the overall system level.
Technical Paper

Design of a Low Atmospheric Pressure Plant Growth Chamber

1995-07-01
951709
Little information exists on the responses of plants to environmental conditions which combine lower than Earth-normal atmospheric pressures with changes in the partial pressures of oxygen, carbon dioxide, and nitrogen. Data collected on the growth of plants in such environments will be valuable in the development of low-pressure plant growth facilities for use on Space Station Freedom, the moon, and Mars. Such low pressure environments have been proposed previously as a means of facilitating EVA operations. Additionally, in some planetary base applications, the use of low atmospheric pressure would allow the use of lightweight plant growth structures for food production, thus reducing both the mass and the launch cost of the life support system.
Technical Paper

Novel Approach for Securing Air-Ground Communication

2012-10-22
2012-01-2103
The FAA and other Air Navigation Service Providers (ANSPs) plan to share the existing cockpit data radio for NextGen data communication applications. This radio is currently used for supporting airline operations. Sharing this radio, which operates in a relatively open network environment, with mission critical air traffic control communications creates a need to address air-ground security. Most of the data to be shared over air-ground communication is tactical and transient in nature. In addition, secure communication between the controller and the pilot provides situational awareness to all receivers listening on the voice radio channel. In this paper we provide a rationale for securing air-ground communication and explore some of the issues in implementing a secure air-ground communication channel between the controller and the pilot over the shared radio.
Technical Paper

Increasing the Effective AKI of Fuels Using Port Water Injection (Part II)

2022-03-29
2022-01-0434
This is the second part of a study on using port water injection to quantifiably enhance the knock performance of fuels. In the United States, the metric used to quantify the anti-knock performance of fuels is Anti Knock Index (AKI), which is the average of Research Octane Number (RON) and Motor Octane Number (MON). Fuels with higher AKI are expected to have better knock mitigating properties, enabling the engine to run closer to Maximum Brake Torque (MBT) spark timing in the knock limited region. The work done in part I of the study related increased knock tolerance due to water injection to increased fuel AKI, thus establishing an ‘effective AKI’ due to water injection. This paper builds upon the work done in part I of the study by repeating a part of the test matrix with Primary Reference Fuels (PRFs), with iso-octane (PRF100) as the reference fuel and lower PRFs used to match its performance with the help of port water injection.
Technical Paper

High-Speed Spray-to-Spray Collision Study on Two-Hole Impinging Jet Nozzles

2015-04-14
2015-01-0948
High-speed spray-to-spray liquid impingement could be an effective phenomenon for the spray propagation and droplet vaporization. To achieve higher vaporization efficiency, impingement from two-hole nozzles is analyzed in this paper. This paper focuses on investigating vaporization mechanism as a function of the impingement location and the collision breakup process provided by two-hole impinging jet nozzles. CFD (Computational Fluid Dynamics) is adopted to do simulation. Lagrangian model is used to predict jet-to-jet impingement and droplet breakup conditions while KH-RT breakup and O'Rourke collision models are implemented for the simulation. The paper includes three parts: First, a single spray injected into an initially quiescent constant volume chamber using the Lagrangian approach is simulated to identify the breakup region, which will be considered as a reference to study two-hole impinging jet nozzles. Lagrangian simulation results would be validated via experimental results.
Journal Article

Increasing the Effective AKI of Fuels Using Port Water Injection (Part I)

2021-04-06
2021-01-0470
Anti-knock index (AKI) is a metric that can be used to quantify the anti-knock performance of a fuel and is the metric used in the United States. AKI is the average of Research Octane Number (RON) and Motor Octane Number (MON), which are calculated for every fuel on a Cooperative Fuel Research (CFR) engine under controlled conditions according to ASTM test procedures. Fuels with higher AKI have better knock mitigating properties and can be run with a combustion phasing closer to MBT in the knock limited operating region of a gasoline engine. However, fuels with higher AKI tend to be costlier and less environmentally friendly to produce. As an alternative, the anti-knock characteristics of lower AKI fuels can be improved with water injection. In this sense, the water injection increases the ‘effective AKI’ of the fuel.
Journal Article

The Development of Terrain Pre-filtering Technique Based on Constraint Mode Tire Model

2015-09-01
2015-01-9113
The vertical force generated from terrain-tire interaction has long been of interest for vehicle dynamic simulations and chassis development. To improve simulation efficiency while still providing reliable load prediction, a terrain pre-filtering technique using a constraint mode tire model is developed. The wheel is assumed to convey one quarter of the vehicle load constantly. At each location along the tire's path, the wheel center height is adjusted until the spindle load reaches the pre-designated load. The resultant vertical trajectory of the wheel center can be used as an equivalent terrain profile input to a simplified tire model. During iterative simulations, the filtered terrain profile, coupled with a simple point follower tire model is used to predict the spindle force. The same vehicle dynamic simulation system coupled with constraint mode tire model is built to generate reference forces.
Technical Paper

Extraction of Liquid Water from the Exhaust of a Diesel Engine

2015-09-29
2015-01-2806
Introducing water in a diesel engine has been known to decrease peak combustion temperatures and decrease NOx emissions. This however, has been limited to stationary and marine applications due to the requirement of a separate water supply tank in addition to the fuel tank, thereby a two-tank system. Combustion of hydrocarbon fuels produce between 1.35 (Diesel) and 2.55 times (Natural Gas) their mass in water. Techniques for extracting this water from the exhaust flow of an engine have been pursued by the United States department of defense (DOD) for quite some time, as they can potentially reduce the burden of supply of drinking water to front line troops in theater. Such a technology could also be of value to engine manufacturers as it could enable water injection for performance, efficiency and emissions benefits without the drawbacks of a two-tank system.
Technical Paper

A Scenario-Based Test Selection and Scoring Methodology for Inclusion in a Safety Case Framework for Automated Vehicles

2024-04-09
2024-01-2644
Effectively determining automated driving system (ADS)-equipped vehicle (AV) safety without relying on testing an infeasibly large number of driving scenarios is a challenge with wide recognition in industry and academia. The following paper builds on previous work by the Institute of Automated Mobility (IAM) and Science Foundation Arizona (SFAz), and proposes a test selection and scoring methodology (TSSM) as part of a safety case-based framework being developed by the SFAz to ensure the safety of AVs while addressing the scenario testing challenge. The TSSM is an AV verification and validation (V&V) process that relies, in part, on iterative, partially random generation of AV driving scenarios. These scenarios are generated using an operational design domain (ODD) and behavioral competency portfolio, which expresses the vehicle ODD and behavioral competencies in terms of quantifiable amounts or intensities of discrete components.
Journal Article

Driving Safety Performance Assessment Metrics for ADS-Equipped Vehicles

2020-04-14
2020-01-1206
The driving safety performance of automated driving system (ADS)-equipped vehicles (AVs) must be quantified using metrics in order to be able to assess the driving safety performance and compare it to that of human-driven vehicles. In this research, driving safety performance metrics and methods for the measurement and analysis of said metrics are defined and/or developed. A comprehensive literature review of metrics that have been proposed for measuring the driving safety performance of both human-driven vehicles and AVs was conducted. A list of proposed metrics, including novel contributions to the literature, that collectively, quantitatively describe the driving safety performance of an AV was then compiled, including proximal surrogate indicators, driving behaviors, and rules-of-the-road violations.
Book

Accelerated Testing: A Practitioner's Guide to Accelerated and Reliability Testing, 2nd Edition

2021-08-16
The application of accelerated testing theory is a difficult proposition, yet one that can result in considerable time and cost savings, as well as increasing a product's useful life. In Accelerated Testing: A Practitioner's Guide to Accelerated and Reliability Testing, readers are exposed to the latest, most practical knowledge available in this dynamic and important discipline. Authors Bryan Dodson and Harry Schwab draw on their considerable experience in the field to present comprehensive, insightful views in this book. Readers have free access to a website with numerous Excel templates and statistical tables as well as government documents and the AMSAA Reliability Growth Handbook. Development and quality assurance tests are defined in detail and are presented from a practical viewpoint. Included are testing fundamentals, plans and models, and equipment and methods most commonly used in accelerated testing.
X