Refine Your Search

Topic

Author

Search Results

Journal Article

Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2008/2009

2009-07-12
2009-01-2445
The design and evaluation of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from a spacecraft atmosphere is presented. The approach for Orion and Altair is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of an Orion Crew Exploration Vehicle Sorbent Based Atmosphere Revitalization system, including test articles, a facility test stand, and full-scale testing in late 2008 and early 2009 is discussed.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Guidance for Trade Studies of Flight-Equivalent Hardware

2007-07-09
2007-01-3223
Spacecraft hardware trade studies compare options primarily on mass while considering impacts to cost, risk, and schedule. Historically, other factors have been considered in these studies, such as reliability, technology readiness level (TRL), volume and crew time. In most cases, past trades compared two or more technologies across functional and TRL boundaries, which is an uneven comparison of the technologies. For example, low TRL technologies with low mass were traded directly against flight-proven hardware without consideration for requirements and the derived architecture. To provide for even comparisons of spacecraft hardware, trades need to consider functionality, mission constraints, integer vs. real number of flight hardware units, and mass growth allowances by TRL.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2006/2007

2007-07-09
2007-01-3254
The design of a vacuum-swing adsorption process to remove metabolic water, metabolic carbon dioxide, and metabolic and equipment generated trace contaminant gases from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. For Orion, the approach is taken that all metabolic water must be removed by the Sorbent-Based Atmosphere Revitalization System (SBAR), a technology approach that has not been used in previous spacecraft life support systems. Design and development of a prototype SBAR, a facility test stand, and subsequent testing of the SBAR in late 2006 and early 2007 is discussed.
Technical Paper

Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

1997-07-01
972331
The paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station(ISS).Current activities computer model development, component design and development, subsystem/integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.
Technical Paper

Diode-Laser Spectral Absorption-Based Gas Species Sensor for Life Support Applications

1997-07-01
972388
We present the development of a semiconductor diode laser spectral absorption based gas species sensor for oxygen concentration measurements, intended for life support system monitoring and control applications. Employing a novel self-compensating, noise cancellation detection approach, we experimentally demonstrate better than 1% accuracy, linearity, and stability for monitoring breathing air conditions with 0.2 second response time. We also discuss applications of this approach to CO2 sensing.
Technical Paper

Performance of the Atmosphere Revitalization System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972418
The Lunar-Mars Life Support Test Project (LMLSTP), formerly known as the Early Human Testing Initiative (EHTI), was established to perform the necessary research, technology development, integration, and verification of regenerative life support systems to provide safe, reliable, and self-sufficient human life support systems. Four advanced life support system test phases make up LMLSTP. Phase I of the test program demonstrated the use of plants to provide the atmosphere revitalization requirements of a single test subject for 15 days. The primary objective of the Phase II test was to demonstrate an integrated regenerative life support system capable of sustaining a human crew of four for 30 days in a closed chamber. The third test phase, known as Phase IIA, served as a demonstration of International Space Station (ISS) representative life support technology, supporting a human crew of four for 60 days.
Technical Paper

Development of a Hydrophilic, Antimicrobial Coating for Condensing Heat Exchangers

1997-07-01
972408
Condensing heat exchangers (CHX) are used in many applications, including space life support systems, to control temperature and humidity. Temperature control is achieved by transfer of the heat load to a circulating coolant. Simultaneously, humidity control is provided by cooling the air below its dew point, and separating the condensed water from the gas flow. In space, the condensate does not drain from the heat exchanger because of the absence of gravity. To overcome this problem, slurping condensing heat exchangers have been developed that combine a hydrophilic coating on the air flow passages and an additional slurping section added to the air outlet of the heat exchanger to achieve efficient air-water separation. For short missions such as those typical for shuttle flights, microbial proliferation in the coatings has not been a major issue, despite the fact that the coatings are continuously moist and an ideal breeding ground for microbial species.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: International Space Station Recipient Mode Test Results and Lessons Learned

1997-07-01
972375
A test has been completed at NASA's Marshall Space Flight Center (MSFC) to evaluate the Water Recovery and Management (WRM) system and Waste Management (WM) urinal design for the United States On-Orbit Segment (USOS) of the International Space Station (ISS). Potable and urine reclamation processors were integrated with waste water generation equipment and successfully operated for a total of 128 days in recipient mode configuration to evaluate the accumulation of contaminants in the water system and to assess the performance of various modifications to the WRM and WM hardware. No accumulation of contaminants were detected in the product water over the course of the recipient mode test. An additional 18 days were conducted in donor mode to assess the ability of the system to removal viral contaminants, to monitor the breakthrough of organic contaminants through the multifiltration bed, and for resolving anomalies that occurred during the test.
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Advanced Portable Life Support System Fan Controller

1998-07-13
981675
Advanced space suit portable life support systems (PLSS) require high performance fans for the breathing gas ventilation system. AlliedSignal has developed a high speed air bearing fan for this application. This work addresses the development of an advanced electronic controller to drive this fan. Advances in space suit technology required an improved fan controller. The architecture of the controller was modified to enhance performance and facilitate testing in a space environment. These modifications were both physical and functional. To reduce the size of the controller, electrical, electronic and electromechanical (EEE) components were divided into two circuit cards, the housing was redesigned, test points and control knobs were removed, and a higher grade of EEE components were used in the development of the controller. These modifications improved the functional characteristics of the controller.
Technical Paper

Space Linear Acceleration Mass Measurement Device (SLAMMD) for the Human Research Facility (HRF)

1998-07-13
981652
The microgravity environment presents unique challenges to mass measurement. Early attempts to develop a human mass measurement device for space application include: 1) a spring oscillator design, developed by astronaut Dr. William Thornton, used in Spacelab, and 2) a linear acceleration device, developed by the former Soviet Union, used in the Mir space station. Accurate measurement of human body mass in microgravity is important for both research and crew health care monitoring. To accommodate this requirement, the Human Research Facility (HRF) has developed an improved acceleration-based Space Linear Acceleration Mass Measurement Device (SLAMMD) for the International Space Station (ISS).
Technical Paper

Development of a Space Flight Ultrasound System for Space Life Science Experiments

1998-07-13
981647
The Human Research Facility (HRF) was developed with the sole, singular purpose of advancing the study of the effects of microgravity on biological systems. The single, largest component of this effort is the Human Research Facility's Ultrasound System. The HRF Ultrasound System, once on orbit, will be a fully functional, state of the art, ultrasound machine capable of providing all modes and modalities currently available in terrestrial hospitals and research centers. The HRF Ultrasound System will be able to transfer data from the International Space Station (ISS) to researchers on the ground in near real-time, comply with diagnostic commands from Mission Control at Johnson Space Center (JSC) and accept software upgrades with minimal crew interface.
Technical Paper

Data Transfer Mechanism for Ultrasound Microgravity Experiments

1998-07-13
981648
The Human Research Facility (HRF) dedicates itself to researching the effects of microgravity on human physiology. The largest HRF payload is a fully functional state-of-the-art ultrasound system modified for space flight. This ultrasound system interfaces with remote software to provide video and data communication between the HRF Ultrasound and the HRF Telescience Support Center (TSC) at Johnson Space Center (JSC). This software architecture allows NASA scientists and engineers to transfer images, perform diagnostics, and support upgrades. These functions provide the means to interpret life science experiments performed in a microgravity environment.
Technical Paper

An Overview of the Human Research Facility (HRF) for the International Space Station (ISS)

1998-07-13
981646
Scheduled for an initial launch in the first quarter of the year 2000, the Human Research Facility (HRF) will provide the first major pieces of biomedical research hardware for Life Sciences investigations on the International Space Station (ISS). The HRF will support scientific studies in the fields of biochemistry and metabolism, cardiopulmonary physiology, environmental sciences, human factors, musculoskeletal physiology, neurosciences, and psychology and behavior. To date, twenty seven experiments have been selected for further definition. HRF hardware will include a gas analyzing mass spectrometer, a body mass measurement device, an ultrasound machine, a computer workstation/data storage device, a strength measurement device, a range of motion suit, and a number of stowed hardware items.
Technical Paper

Human Research Facility Workstation

1998-07-13
981653
The Human Research Facility (HRF) Workstation is a key computational element in the HRF data system architecture. The HRF Workstation consists of a stowed display, keyboard, archive media, cables, and an active four Panel Unit (PU) drawer with electrical, mechanical, thermal, and data interfaces to the EXpedite the PRocessing of Experiments to Space Station (EXPRESS) rack and the International Space Station (ISS). The four panel unit drawer, called the Workstation Computer Drawer, is the “heart” of the system and contains the processors, RAM, hard drives, interface boards, etc. The HRF Workstation will provide data collection, archive, downlink, display, video processing, graphics accelerator, user interface, and EXPRESS rack interfaces for experiment operation.
Technical Paper

Performance of the Physicochemical Air Revitalization System During the Lunar-Mars Life Support Test Project Phase III Test

1998-07-13
981703
Future long-term space missions, such as a manned mission to Mars, will require regenerative life support systems which will enable crews more self-sufficiency and less dependence on resupply. Toward this effort, a series of tests called the Lunar-Mars Life Support Test Project have been conducted as part of the National Aeronautical and Space Administration (NASA's) advanced life support technology development program. The last test in this series was the Phase III test which was conducted September 19 - December 19, 1997 in the Life Support Systems Integration Facility at the Johnson Space Center. The overall objective of the Phase III test was to conduct a 90-day regenerative life support system test with four human test subjects demonstrating an integrated biological and physicochemical life support system to produce potable water, maintain a breathable atmosphere, and maintain a shirt sleeve environment.
Technical Paper

The Lunar-Mars Life Support Test Project Phase III 90-day Test: The Crew Perspective

1998-07-13
981702
The Lunar-Mars Life Support Test Project (LMLSTP) Phase III test examined the use of biological and physicochemical life support technologies for the recovery of potable water from waste water, the regeneration of breathable air, and the maintenance of a shirt-sleeve environment for a crew of four persons for 91 days. This represents the longest duration ground-test of life support systems with humans performed in the United States. This paper will describe the test from the inside viewpoint, concentrating on three major areas: maintenance and repair of life support elements, the scientific projects performed primarily in support of the International Space Station, and numerous activities in the areas of public affairs and education outreach.
X