Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Testing and Analysis of an Environmental System Test Stand

2003-07-07
2003-01-2361
Thermal control systems for space application plant growth chambers offer unique challenges. The ability to control temperature and humidity independently gives greater flexibility for optimizing plant growth. Desired temperature and relative humidity range vary widely from 15°C to 35°C and 65% to 85% respectively. On top of all of these variables, the thermal control system must also be conservative in power and mass. These requirements to develop and test a robust thermal control system for space applications led to the design and development of the Environmental System Test Stand (ESTS) at NASA Johnson Space Center (JSC). The ESTS was designed to be a size constrained, environmental control system test stand with the flexibility to allow for a variety of thermal and lighting technologies. To give greater understanding to the environmental control system, the development of the ESTS included both mathematical models and the physical test stand.
Technical Paper

A Mission Statement for Space Architecture

2003-07-07
2003-01-2431
In an effort to define and advance the new discipline of Space Architecture, the AIAA technical subcommittee on Aerospace Architecture organized a Space Architecture Workshop that took place during the World Space Congress 2002 in Houston, Texas. One of the results of this workshop is a “Mission Statement for Space Architecture” that addresses the following core issues in a concise manner: definition, motivation, utility, required knowledge, and related disciplines. The workshop also addressed the typology and principles of space architecture, as well as basic philosophical guidelines for practitioners of this discipline. The mission statement, which was unanimously adopted by the workshop participants, reads as follows ([1], [2], [3]): “Space Architecture is the theory and practice of designing and building inhabited environments in outer space, responding to the deep human drive to explore and occupy new places.
Technical Paper

Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

2003-07-07
2003-01-2538
An austere fiscal environment in the aerospace community creates pressure to reduce program costs, often minimizing or even deleting human interface requirements from the design process. With the assumption that the flight crew can recover, in real time, from a poorly human factored space vehicle design, the classical crew interface requirements have either been not included in the design or not properly funded, even though they are carried as requirements. Cost cuts have also affected the quality of retained human factors engineering personnel. Planning is ongoing to correct these issues. Herein are techniques for ensuring that human interface requirements are integrated with flight design from proposal through verification and launch activation.
Technical Paper

The AMS-02 Thermal Control System Design

2003-07-07
2003-01-2585
This paper reports on the Thermal Control System (TCS) of the AMS-02 (Alpha Magnetic Spectrometer). AMS-02 will be installed on the International Space Station (ISS) Starboard segment of the Truss in 2005, where it will acquire data for at least three years. The AMS-02 payload has a mass of about 6700 kg, a power budget of 2kW and consists of 5 different instruments, with their associated electronic equipment. Analytical integration of the AMS-02 thermal mathematical model is described in the paper, together with the main thermal design features. Stringent temperature stability requirements have been satisfied, providing a stable thermal environment that allows for easier calibration of the detectors. The overall thermal design uses a combination of standard and innovative concepts to fit specific instruments needs.
Technical Paper

International Space Station (ISS) Automated Safing Responses to Fire Emergencies

2003-07-07
2003-01-2595
Environmental Control and Life Support (ECLS) functionality aboard the International Space Station (ISS) includes responses to emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions during the emergencies. This paper focuses on the ISS response to fire emergencies. It includes the integrated ISS automatic vehicle response and crew actions for fire. Philosophies covered include fire detection, fire response, and post-fire atmosphere recovery. Current responses and crew actions are discussed for the existing vehicle configuration on-orbit. This includes modules in the assembly sequence up to and including the Docking Compartment (DC1). Possible future improvements to the fire emergency responses are also described.
Technical Paper

Updating the Tools Used to Estimate Space Radiation Exposures for Operations: Codes, Models, and Interfaces

2002-07-15
2002-01-2457
In order to estimate the exposure to a crew in space, there are three essential steps to be performed: first, the ambient radiation environment at the vehicle must be characterized; second, the mass distribution properties of the vehicle, including the crewmembers themselves must be developed, and third a model of the interactions of space radiations with matter must be employed in order to characterize the radiation field at the dose point of interest. The Space Radiation Analysis Group (SRAG) at the NASA, Johnson Space Center carries the primary responsibility for the operational radiation protection support function associated with manned space flight. In order to provide support during the various planning, execution, and analysis/recording phase activities associated with a given mission, tools have been developed to allow rapid, repeatable calculations of exposure on orbit.
Technical Paper

Mathematical Modeling of Food Systems for Long-Term Space Missions

2002-07-15
2002-01-2290
The quantitative analysis of the food system for long-term space missions is a crucial factor for the comparison of different food plans and for the evaluation of the food system as part of the overall mission. Such analysis should include important factors such as nutrition, palatability, diet cycle length, and psychological issues related to food. This paper will give the details of a mathematical model that was developed during the first author's participation as a Summer Faculty Fellow at Johnson Space Center. The model includes nutrition, palatability, diet cycle length, and psychological issues as important components. The model is compatible with the Equivalent System Mass (ESM) metric previously developed as the Advance Life Support (ALS) Research and Technology Metric.
Technical Paper

Advanced Space Suit Portable Life Support Subsystem Packaging Design

2006-07-17
2006-01-2202
This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA's in-house 1998 study, which resulted in the “Flex PLSS” concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

1994-06-01
941451
The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
Technical Paper

Preliminary Design Methodology for an Advanced Extravehicular Mobility Unit Portable Life Support Subsystem

1995-07-01
951672
Developing advanced technology through the prototype phase on a system as complex as a Portable Life Support Subsystem (PLSS) for an Extravehicular Mobility Unit (EMU) is a time and resource consuming process. Experience has shown that most of the decisions controlling the life cycle cost of a system intended for operational use are made very early in the design process. By the preliminary design review most of the design-controlled cost drivers are locked into the design. To ensure a reasonable chance for the design to successfully meet mission requirements, it is best to choose the most promising, most likely-to-succeed technology available in the early stages of breadboard and preprototype development.
Technical Paper

Integrated Test and Evaluation of a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal System (CDRA), Mechanical Compressor Engineering Development Unit (EDU), and Sabatier Engineering Development Unit (EDU)

2005-07-11
2005-01-2864
This paper presents and discusses the results of an integrated 4-Bed Molecular Sieve (4BMS), mechanical compressor, and Sabatier Engineering Development Unit (EDU) test. Testing was required to evaluate the integrated performance of these components of a closed loop atmosphere revitalization system together with a proposed compressor control algorithm. A theoretical model and numerical simulation had been used to develop the control algorithm; however, testing was necessary to verify the simulation results and further refine the model. Hardware testing of a fully integrated system also provided a better understanding of the practical inefficiencies and control issues, which are unavailable from a theoretical model.
Technical Paper

Automatic Thermal Control Through a LCVG for a Spacesuit

1999-07-12
1999-01-1970
Automatic thermal control (ATC) was investigated for implementation into a spacesuit to provide thermal neutrality to the astronaut through a range of activity levels. Two different control concepts were evaluated and compared for their ability to maintain subject thermal comfort. Six test subjects, who were involved in a series of three tests, walked on a treadmill following specific metabolic profiles while wearing the Mark III spacesuit in ambient environmental conditions. Results show that individual subject comfort was effectively provided by both algorithms over a broad range of metabolic activity. ATC appears to be highly effective in providing efficient, “hands-off” thermal regulation requiring minimal instrumentation. Final selection of an algorithm to be implemented in an advanced spacesuit system will require testing in dynamic thermal environments and consideration of technology for advancement in instrumentation and controller performance.
Technical Paper

ISS TransHab: Architecture Description

1999-07-12
1999-01-2143
This paper will describe the ISS TransHab’s architectural design being proposed as a habitation module for the International Space Station. TransHab is a space inflatable habitation module that originally was designed to support a crew of six as a transit habitat (TransHab) to and from Mars. As an evolution of TransHab, it has transformed into the proposed alternative habitat module for the International Space Station (ISS). A team of architects and engineers at the Johnson Space Center has been designing and testing this concept to make it a reality.
Technical Paper

Characterization of the Three Phase Catalytic Wet Oxidation Process in the International Space Station (ISS) Water Processor Assembly

2000-07-10
2000-01-2252
A three phase catalytic mathematical model was developed for analysis and optimization of the volatile reactor assembly (VRA) used on International Space Station (ISS) Water Processor. The Langmuir-Hinshelwood Hougen-Watson (L-H) expression was used to describe the surface reaction rate. Small column experiments were used to determine the L-H rate parameters. The test components used in the experiments were acetic acid, acetone, ethanol, 1-propanol, 2-propanol and propionic acid. These compounds are the most prevalent ones found in the influent to the VRA reactor. The VRA model was able to predict performance of small column data and experimental data from the VRA flight experiment.
X