Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

On the Mechanism of Controlled Auto Ignition

2002-03-04
2002-01-0421
Controlled auto ignition (CAI) is a form of combustion which uses an auto-ignited homogeneous air/fuel mixture but is controlled (or moderated) by regulating the quantity of internal exhaust gas residuals. In this paper, using a fully variable valve train and a newly developed exhaust valve control strategy, we substituted EGR with hot nitrogen or hot air. We found that the internal exhaust gas residuals have both thermal and chemical effects on CAI combustion. To investigate the thermal effect, nitrogen was used as it is a chemically inert gas. Although its temperature was raised to that of the internal exhaust gas residuals during testing, CAI combustion could not be promoted without assistance from a spark in a form of hybrid CAI, thus indicating that exhaust gas residuals have a chemical effect as well.
Technical Paper

Ion Current Signal Interpretation via Artificial Neural Networks for Gasoline HCCI Control

2006-04-03
2006-01-1088
The control of Homogeneous Charge Compression Ignition (HCCI) (also known as Controlled Auto Ignition (CAI)) has been a major research topic recently, since this type of combustion has the potential to be highly efficient and to produce low NOx and particulate matter emissions. Ion current has proven itself as a closed loop control feedback for SI engines. Based on previous work by the authors, ion current was acquired through HCCI operation too, with promising results. However, for best utilization of this feedback signal, advanced interpretation techniques such as artificial neural networks can be used. In this paper the use of these advanced techniques on experimental data is explored and discussed. The experiments are performed on a single cylinder cam-less (equipped with a Fully Variable Valve Timing (FVVT) system) research engine fueled with commercially available gasoline (95 ON).
Technical Paper

Enlarging the Operational Range of a Gasoline HCCI Engine By Controlling the Coolant Temperature

2005-04-11
2005-01-0157
The Homogeneous Charge Compression Ignition (HCCI) engine combustion uses heat energy from trapped exhaust gases enhanced by the piston compression heating to auto ignite a premixed air/gasoline mixture. As the HCCI combustion is controlled by the charge temperature, composition and pressure, it therefore, prevents the use of a direct control mechanism such as in the spark and diesel combustion. Using a large amount of trapped residual gas (TRG), is seen as one of the ways to achieve and control HCCI in a certain operating range. By varying the amount of TRG in the fresh air/fuel mixture (inside the cylinder), the charge mixture temperature, composition and pressure can be controlled and hence, the auto ignition timing and heat release rate. The controlled auto ignition (HCCI) engine concept has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions.
Technical Paper

Using Ion-current Sensing to Interpret Gasoline HCCI Combustion Processes

2006-04-03
2006-01-0024
Homogeneous charge compression ignition (HCCI), combustion has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions, but experiences problems with cold start, running at idle and producing high power density. A solution to these is to operate the engine in a ‘hybrid mode’, where the engine operates in spark ignition mode at cold start, idle and high loads and HCCI mode elsewhere during the drive cycle, demanding a seamless transition between the two modes of combustion through spark assisted controlled auto ignition. Moreover; HCCI requires considerable control to maintain consistent start of combustion and heat release rate, which has thus far limited HCCI's practical application. In order to provide a suitable control method, a feedback signal is required.
X