Refine Your Search

Topic

Search Results

Journal Article

Innovations In Experimental Techniques For The Development of Fuel Path Control In Diesel Engines

2010-04-12
2010-01-1132
The recent development of diesel engine fuel injection systems has been dominated by how to manage the degrees of freedom that common rail multi-pulse systems now offer. A number of production engines already use four injection events while in research, work based on up to eight injection events has been reported. It is the degrees of freedom that lead to a novel experimental requirements. There is a potentially complex experimental program needed to simply understand how injection parameters influence the combustion process in steady state. Combustion behavior is not a continuum and as both injection and EGR rates are adjusted, distinct combustion modes emerge. Conventional calibration processes are severely challenged in the face of large number of degrees of freedom and as a consequence new development approaches are needed.
Journal Article

Methodology for the Design of an Aerodynamic Package for a Formula SAE Vehicle

2014-04-01
2014-01-0596
Recent changes to the rules regarding aerodynamics within Formula SAE, combined with faster circuits at the European FSAE events, have made the implementation of aerodynamic devices, to add down-force, a more relevant topic. As with any race series it is essential that a detailed analysis is completed to establish the costs and benefits of including an aerodynamic package on the vehicle. The aim of the work reported here was to create a methodology that would fully evaluate all aspects of the package and conclude with an estimate of the likely gain in points at a typical FSAE event. The paper limits the analysis to a front and rear wing combination, but the approach taken can be applied to more complex aerodynamic packages.
Journal Article

Experimental Data for the Validation of Numerical Methods - SAE Reference Notchback Model

2014-04-01
2014-01-0590
The use of simulation tools by vehicle manufacturers to design, optimize and validate their vehicles is essential if they are to respond to the demands of their customers, to meet legislative requirements and deliver new vehicles ever more quickly. The use of such tools in the aerodynamics community is already widespread, but they remain some way from replacing physical testing completely. Further advances in simulation capabilities depend on the availability of high quality validation data so that simulation code developers can ensure that they are capturing the physics of the problems in all the important areas of the flow-field. This paper reports on an experimental program to generate such high quality validation data for a SAE 20 degree backlight angle notchback reference model.
Journal Article

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-04-12
2011-01-1303
One of the most critical challenges currently facing the diesel engine industry is how to improve fuel economy under emission regulations. Improvement in fuel economy can be achieved by precisely controlling Air/Fuel ratio and by monitoring fuel consumption in real time. Accurate and repeatable measurements of fuel rate play a critical role in successfully controlling air/fuel ratio and in monitoring fuel consumption. Volumetric and gravimetric measurements are well-known methods for measuring fuel consumption of internal combustion engines. However, these methods are not suitable for obtaining fuel flow rate data used in real-time control/measurement. In this paper, neural networks are used to solve the problem concerning discontinuous data of fuel flow rate measured by using an AVL 733 s fuel meter. The continuous parts of discontinuous fuel flow rate are used to train and validate a neural network, which can then be used to predict the discontinuous parts of the fuel flow rate.
Technical Paper

Effects of Fuel Injection Parameters on Low Temperature Diesel Combustion Stability

2010-04-12
2010-01-0611
Low temperature diesel combustion (LTC) exhibits ultra low NOx and smoke emissions, but currently it has the problems of increased CO and THC emissions, and higher combustion instability compared to conventional diesel combustion. This study evaluated the effects of fuel injection parameters on combustion stability in a single cylinder research diesel engine running at low and intermediate speeds and loads under LTC operating conditions. The LTC operation was achieved using high rates of EGR. In this work, the fuel injection timing and injection pressure were varied to investigate their effects on combustion stability at fixed engine speed and total fuel quantity. The cylinder pressure and THC emissions were measured during the tests. The THC emissions and the coefficient of variability of IMEP (CoV(IMEP)) were used to assess combustion stability. The relationship between these two parameters was also evaluated.
Technical Paper

The Potential for Thermo-Electric Devices in Passenger Vehicle Applications

2010-04-12
2010-01-0833
The promise of thermo-electric (TE) technology in vehicles is a low maintenance solid state device for power generation. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. The potential to make use of an otherwise wasted flow of energy means that the overall system efficiency can be improved substantially. One of the barriers to a successful application of the technology is the device efficiency. The TE properties of even the most advanced materials are still not sufficient for a practical, cost effective device. However the rate of development is such that practical devices are likely to be available within the next fifteen years. In a previous paper [ 1 ], the potential for such a device was shown through an integrated vehicle simulation and TEG model.
Technical Paper

Turbo-Discharging: Predicted Improvements in Engine Fuel Economy and Performance

2011-04-12
2011-01-0371
The importance of new technologies to improve the performance and fuel economy of internal combustion engines is now widely recognized and is essential to achieve CO₂ emissions targets and energy security. Increased hybridization, combustion improvements, friction reduction and ancillary developments are all playing an important part in achieving these goals. Turbocharging technology is established in the diesel engine field and will become more prominent as gasoline engine downsizing is more widely introduced to achieve significant fuel economy improvements. The work presented here introduces, for the first time, a new technology that applies conventional turbomachinery hardware to depressurize the exhaust system of almost any internal combustion engine by novel routing of the exhaust gases. The exhaust stroke of the piston is exposed to this low pressure leading to reduced or even reversed pumping losses, offering ≻5% increased engine torque and up to 5% reduced fuel consumption.
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
Technical Paper

Exploring the Value of Open Source in SI Engine Control

2011-04-12
2011-01-0702
The notion of open source systems has been well established in systems software and typified by the development of the Linux operating system. An open source community is a community of interest that makes use of software tools in research and development. Their ongoing development is part of the free flow of ideas on which the community. The motivation for the work reported in this paper is to provide the research community in engine controls with a ready access to a complete engine management solution and the component parts. The work described in this paper extends open source principles to engine control with a portable spark ignition (SI) control strategy assembled using Simulink. The underlying low level drivers are written in C and designed for portability. A calibration tool is written in C and works over a controller area network (CAN) link to the engine control unit (ECU). The ECU hardware is based on the Infineon Tricore microcontroller.
Technical Paper

Handling Performance of a Vehicle Equipped with an Actively Controlled Differential

2011-05-17
2011-01-1557
Vehicle handling is heavily influenced by the torque distribution to the driving wheels. This work presents a newly developed differential, designed to actively control the driving torque distribution to the wheels. The new device incorporates an electric machine, which can operate either as a motor or generator. A control unit monitors signals from various sources in the vehicle, such as steering angle, yaw acceleration and wheel rotational speed. Then, a control algorithm takes into account the steering angle rate and the vehicle speed in order to determine the suitable difference between output torque values. The handling improvement capabilities are evaluated by simulating in ADAMS/Car the driving behavior of a vehicle equipped with the new differential. The model that has been used to simulate vehicle handling is that of a Formula SAE type racing car.
Technical Paper

In-Cylinder Pressure Modelling with Artificial Neural Networks

2011-04-12
2011-01-1417
More and more stringent emission regulations require advanced control technologies for combustion engines. This goes along with increased monitoring requirements of engine behaviour. In case of emissions behaviour and fuel consumption the actual combustion efficiency is of highest interest. A key parameter of combustion conditions is the in-cylinder pressure during engine cycle. The measurement and detection is difficult and cost intensive. Hence, modelling of in-cylinder conditions is a promising approach for finding optimum control behaviour. However, on-line controller design requires real-time scenarios which are difficult to model and current modelling approaches are either time consuming or inaccurate. This paper presents a new approach of in-cylinder condition prediction. Rather than reconstructing in-cylinder pressure signals from vibration transferred signals through cylinder heads or rods this approach predicts the conditions.
Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

2011-08-30
2011-01-1890
The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Technical Paper

Optical Analysis and Measurement of Crankcase Lubricant Oil Atomisation

2012-04-16
2012-01-0882
Crankcase emissions are a complex mixture of combustion products and, specifically Particulate Matter (PM) from lubricant oil. Crankcase emissions contribute substantially to the particle mass and particle number (PN) emitted from an internal combustion engine. Environmental legislation demands that the combustion and crankcase emissions are either combined to give a total measurement or the crankcase gases are re-circulated back into the engine, both strategies require particle filtration. There is a lack of understanding regarding the physical processes that generate crankcase emissions of lubricant oil, specifically how the bulk lubricant oil is atomised into droplets. In this paper the crankcase of a motored compression ignition engine, has been optically accessed to visualise the lubricant oil distribution. The oil distribution was analysed in detail using high speed laser diagnostics, at engine speeds up to 2000 rpm and oil temperatures of 90°C.
Technical Paper

Elastohydrodynamics of Hypoid Gears in Axle Whine Conditions

2012-06-13
2012-01-1538
This paper presents an investigation into Elastohydrodynamic (EHL) modeling of differential hypoid gears that can be used in coupling with Newtonian (or multibody) dynamics to study Noise, Vibration and Harshness (NVH) phenomena, such as axle whine. The latter is a noise of a tonal nature, emitted from differential axles, characterised by the gear meshing frequency and its multiples. It appears at a variety of operating conditions; during drive and coasting, high and low torque loading. Key design targets for differential hypoid gears are improved efficiency and reduced vibration, which depend critically on the formation of an EHL lubricant film. The stiffness and damping of the oil film and friction generated in the contact can have important effects and cannot be neglected when examining the NVH behaviour of hypoid gears.
Technical Paper

The Effect of Vehicle Cruising Speed on the Dynamics of Automotive Hypoid Gears

2012-06-13
2012-01-1543
The dynamics of automotive differentials have been studied extensively to improve their efficiency and additionally, in recent years, generated noise and vibration. Various mathematical models have been proposed to describe the contact/impact of gear teeth pairs. However, the influence of vehicular cruising speed on the resisting torque has not been considered in sufficient detail. This can lead to unrealistic predictions with regards to loss of contact of teeth pair, a phenomenon which leads to NVH issues. The current work presents a torsional model of a hypoid gear pair. The resisting torque is a function of the traction force and aerodynamic drag, whilst the vehicle is cruising at nominally constant speed. The pinion input torque is derived through assumed instantaneous equilibrium conditions. In this approach, realistic excitation capturing the vehicle's driving conditions is imposed on the dynamics of the hypoid gear pair.
Technical Paper

Ionisation and Ionisation Rate of a Two-Stroke HCCI Engine Fuelled with E85 for Control Feedback

2010-04-12
2010-01-1247
Homogenous Charge Compression Ignition (HCCI) combustion phasing and stability provides a challenging control problem over conventional combustion technologies of Spark Ignition (SI) and Compression Ignition (CI). Due to the auto ignition nature of the HCCI combustion there are no direct methods for actuation, the combustion and the phasing relies on indirect methods. This in itself creates a nonlinear dynamic problem between the relationships of control actuators and the combustion behavior. In order to control the process, an accurate feedback signal is necessary to determine the state of the actual combustion process. Ideally to ensure that combustion remains stable and phased correctly an in-cylinder feedback of each cylinder for multi cylinder engines would be preferable. Feedback has been seen in studies using piezoelectric pressure sensors for visually monitoring the pressure in the combustion chamber. This is expensive and requires redesign of the combustion chamber.
Technical Paper

The Investigation into a PC-Based Fluidic Fuel Injection System for Passenger Cars

1995-02-01
950070
This paper describes a gasoline injection system based on air-assisted fluidic injectors. This injection system was implemented on a research engine and the results of air to fuel ratio (AFR) variations, engine combustion characteristics and exhaust emissions from the fluidic injector unit were compared with those from the baseline solenoid type injector. It was demonstrated that the fluidic system produces 9% to 20% lower HC emissions and 5% to 8% higher IMEP than the baseline injection system. This has confirmed the effectiveness of the use of the air-assisted fluidic injector stages and that the improved mixture preparation fuel presentation are obtained by the fluidic system. However, the cyclic flow stability of the fluidic device needs improvement.
Technical Paper

Simulation of Exhaust Unburned Hydrocarbons from a Spark Ignition Engine, Originating from In-Cylinder Crevices

1996-10-01
961956
In this paper the effect of in-cylinder crevices formed by the piston cylinder clearance, above the first ring, and the spark plug cavity, on the entrapment of unburned fuel air mixture during the late compression, expansion and exhaust phases of a spark ignition engine cycle, have been simulated using the Computational Fluid Dynamic (CFD) code KIVA II. Two methods of fuelling the engine have been considered, the first involving the carburetion of a homogeneous fuel air mixture, and the second an attempt to simulate the effects of manifold injection of fuel droplets into the cylinder. The simulation is operative over the whole four stroke engine cycle, and shows the efflux of trapped hydrocarbon from crevices during the late expansion and exhaust phases of the engine cycle.
Technical Paper

Application of Computational Fluid Dynamics to the Study of Conditions Relevant to Autoignition Damage in Engines

1996-10-01
961963
The process of autoignition in an internal combustion engine cylinder produces large amplitude high frequency gas pressure waves accompanied by significant increases in gas temperature and velocity, and as a consequence large convective heat fluxes to piston and cylinder surfaces. Extended exposure of these surfaces to autoignition, results in their damage through thermal fatigue, particularly in regions where small clearances between the piston and cylinder or cylinder head, lie in the path of the oscillatory gas pressure waves. The ability to predict spatial and temporal' variations in cylinder gas pressure, temperature and velocity during autoignition and hence obtain reasonable estimates of surface heat flux, makes it possible to assess levels of surface fatigue at critical zones of the piston and cylinder head, and hence improve their tolerance to autoignition.
Technical Paper

Measurement of Formula One Car Drag Forces on the Test Track

1996-12-01
962517
Coastdown testing is a proven method for determining the drag coefficients for road cars whilst the vehicle is in its normal operating environment. An accurate method of achieving this has been successfully developed at Loughborough University. This paper describes the adaptation and application of these techniques to the special case of a contemporary Formula One racing car. The work was undertaken in conjunction with the Benetton Formula One racing team. The paper outlines the development and application of a suitable mathematical model for this particular type of vehicle. The model includes the aerodynamic, tyre, drivetrain and the un-driven wheel drags and accounts for the change in aerodynamic drag due to ambient wind and changes in vehicle ride height during the coastdown. The test and analysis methods are described.
X