Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Cross Domain Co-Simulation Platform for the Efficient Analysis of Mechatronic Systems

2010-04-12
2010-01-0239
Efficient integration of mechanics and microelectronics components is nowadays a must within the automotive industry in order to minimize integration risks and support optimization of the entire system. We propose in this work a cross domain co-simulation platform for the efficient analysis of mechatronic systems. The interfacing of two state-of-the-art simulation platforms provides a direct link between the two domains at an early development stage, thus enabling the validation and optimization of the system already during modeling phase. The proposed cross-domain co-simulation is used within our TEODACS project for the analysis of the FlexRay technology. We illustrate using a drive-by-wire use case how the different architecture choices may influence the system.
Technical Paper

Tool Based Calibration with the OBDmanager

2010-04-12
2010-01-0249
At the moment the documentation of failure inhibition matrices and the fault path management for different controller types and different vehicle projects are mainly maintained manually in individual Excel tables. This is not only time consuming but also gives a high potential for fault liability. In addition there is also no guarantee that the calibration of these failure inhibition matrices and its fault path really works. Conflicting aims between costs, time and fault liability require a new approach for the calibration, documentation and testing of failure inhibition matrices and the complete Diagnostic System Management (DSM) calibration. The standardization and harmonization of the Diagnostic System Management calibration for different calibration projects and derivates is the first step to reduce time and costs. Creating a master calibration for the conjoint fault paths and labels provides a significant reduction of efforts.
Technical Paper

Industrialization of Base Calibration Methods for ECU-functions Exemplary for Air Charge Determination

2010-04-12
2010-01-0331
Today's calibration process for ECU functions is often based on a wide variety of proprietary tools and individual expert knowledge of calibration engineers. Automatic calibration with an industrialized tool chain provides high potential to reduce testbed time, calibration time and project costs. Based on an efficient measurement procedure in combination with an offline calibration methodology the capability is validated, e.g. for calibrating the ECU function “Air Charge Determination” for SI engines. In this article the implementation, in a series production project of a major OEM, is shown. The whole workflow - which can also be applied to other calibration tasks - will be described in detail. Presented here will be how General Motors Corporation (GM) is able to speed up the calibration of the ECU functions, whilst maintaining at least the same quality of calibration as before, by the use of this tool chain.
Technical Paper

Integrated Breathing Model and Multi-Variable Control Approach for Air Management in Advanced Gasoline Engine

2006-04-03
2006-01-0658
The evolution of automotive engines calls for the design of electronic control systems optimizing the engine performance in terms of reduced fuel consumption and pollutant emissions. However, the opportunities provided by modern engines have not yet completely exploited, since the adopted control strategies are still largely developed in a very heuristic way and rely on a number of SISO (Single Input Single Output) designs. On the contrary, the strong coupling between the available actuators calls for a MIMO (Multi Input Multi Output) control design approach. To this regard, the availability of reliable dynamic engine models plays an important role in the design of engine control and diagnostic systems, allowing for a significant reduction of the development times and costs. This paper presents a control-oriented model of the air-path system of today's gasoline internal combustion engines.
Technical Paper

Automatic ECU-Calibration - An Alternative to Conventional Methods

1993-03-01
930395
Due to increasing complexity of engine electronic systems, there is a demand to handle the often more than 10,000 calibration data automatically. Establishing optimized start of injection and EGR tables of a TC DI Diesel engine by conventional methods takes about two weeks of intensive calibration work. By automatic map calibration, this task can be handled in less than 20 hours automatically, with no staff required during optimization. The benefits of automatic calibration therefore are reduced costs and faster response to any changes in parameters, even with complex multidimensional engine calibration problems. The paper describes the optimization method as well as the experimental work on the test stand that produces the results.
Journal Article

Model-Based Wheel Torque and Backlash Estimation for Drivability Control

2017-03-28
2017-01-1111
To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
Journal Article

Optimal Robust Design Optimization with Application to a Piezoelectric Brake

2008-10-12
2008-01-2554
A robust optimization approach has been applied to the design of a piezoelectric brake. The force generated by the piezoelectric actuator is transmitted to the pad shoe through a lever. The optimal design of the lever is crucial for obtaining the desired performance of the brake. Increasing the stiffness and reducing the mass of the lever is the key problem for such kind of mechatronic brake. A trade off between mass and stiffness of the lever must be obtained. Multi-objective programming (MOP) has been applied in order to achieve the best compromise. In addition to MOP, the optimal robust design method has been applied to perform the optimal design not only by considering the performance of the system (the stiffness and mass of the lever) but also by taking into account the robustness (the sensitivity to the uncertain system parameters).
Technical Paper

Analysis of ABS/ESP Control Logics Using a HIL Test Bench

2011-04-12
2011-01-0032
Electronic Stability Program (ESP) and Antilock Braking System (ABS) are nowadays a standard equipment for passenger cars. ESP increases vehicle safety by applying differential braking torque to the wheels while cornering, thus it extends the area of intervention of ABS which prevents the wheels from being locked up in emergency braking, especially on low friction road surfaces, allowing the driver to maintain steering control of the vehicle, to avoid obstacles and to reduce vehicle stopping distance on most road surfaces. This paper describes a flexible mechatronic test bench for ESP/ABS Electronic Control Unit (ECU) based on Hardware-In-the-Loop (HIL) simulation technique. It consists of a passenger car hydraulic braking system (from master cylinder to brake calipers), with the ESP/ABS ECU integrated and a flexible real-time platform, which simulates vehicle dynamics.
Technical Paper

Enhancement of ABS Performance through On-Board Estimation of the Tires' Response by Means of Smart Tires

2011-04-12
2011-01-0991
Active controls for braking dynamics are widely investigated in literature [1]-[8] as one of the way to improve vehicle safety and avoid collisions. Active systems commonly mounted on passenger cars like ABS/EBD, have achieved a high level of robustness towards possible changes in the tires' characteristics due to multiple causes such as: under-inflation, wear and also replacement of tires with new ones different from the first equipment series. Although these electronic control systems have been designed to be robust and no case-sensitive to such variations in tire conditions, a further improvement of their performance could be achieved by means of a continuous adaptive control.
Technical Paper

MiL-Based Calibration and Validation of Diesel-ECU Models Using Emission and Fuel Consumption Prediction during Dynamic Warm-Up Tests (NEDC)

2012-04-16
2012-01-0432
A calibration and validation workflow will be presented in this paper, which utilizes common static global models for fuel consumption, NOx and soot. Due to the applicability for warm-up tests, e. g. New European Driving Cycle (NEDC), the models need to predict the temperature influence and will be fitted with measuring data from a conditioned engine test bed. The applied model structure - consisting of a number of global data-based sub-models - is configured especially for the requirements of multi-injection strategies of common rail systems. Additionally common global models for several constant coolant water temperature levels are generated and the workflow tool supports the combination and segmentation of global nominal map with temperature correction maps for seamless and direct ECU setting.
Journal Article

Evaluation of Virtual NOx Sensor Models for Off Road Heavy Duty Diesel Engines

2012-04-16
2012-01-0358
NOx and PM are the critical emissions to meet the legislation limits for diesel engines. Often a value for these emissions is needed online for on-board diagnostics, engine control, exhaust aftertreatment control, model-based controller design or model-in-the-loop simulations. Besides the obvious method of measuring these emissions, a sensible alternative is to estimate them with virtual sensors. A lot of literature can be found presenting different modeling approaches for NOx emissions. Some are very close to the physics and the chemical reactions taking place inside the combustion chamber, others are only given by adapting general functions to measurement data. Hence, generally speaking, there is not a certain method which is seen as the solution for modeling emissions. Finding the best model approach is not straightforward and depends on the model application, the available measurement channels and the available data set for calibration.
Technical Paper

Power Electronic Noise-Simulation Measurement Comparison

2019-06-05
2019-01-1451
A growing development of hybrid or fully electrical drives increases the demand for an accurate prediction of noise and vibration characteristics of electric and electronic components. This paper describes the numerical and experimental investigation of noise emissions from power electronics, as one of the new important noise sources in electric vehicles. The noise emitted from the printed circuit board (PCB) equipped with multi-layer ceramic capacitors (MLCC) is measured and used for the calibration and validation of numerical model. Material properties are tuned using results from experimental modal analysis, with special attention to the orthotropic characteristic of the PCB glass-reinforced epoxy laminate sheet (FR-4). Electroacoustic excitation is pre-calculated using an extension of schematic-based EMC simulation and applied to the structural model. Structural vibrations are calculated with a commercial FEM solver with the modal frequency response analysis.
Journal Article

Development of an ESP Control Logic Based on Force Measurements Provided by Smart Tires

2013-04-08
2013-01-0416
The present paper investigates possible enhancement of ESP performance associated with the use of smart tires. In particular a novel control logic based on a direct feedback on the longitudinal forces developed by the four tires is considered. The control logic was developed using a simulation tool including a 14 dofs vehicle model and a smart tires emulator. Performance of the control strategy was evaluated in a series of handling maneuvers. The same maneuvers were performed on a HiL test bench interfacing the same vehicle model with a production ESP ECU. Results of the two logics were analyzed and compared.
Technical Paper

Automated EMS Calibration using Objective Driveability Assessment and Computer Aided Optimization Methods

2002-03-04
2002-01-0849
Future demands regarding emissions, fuel consumption and driveability lead to complex engine and power train control systems. The calibration of the increasing number of free parameters in the ECU's contradicts the demand for reduced time in the power train development cycle. This paper will focus on the automatic, unmanned closed loop optimization of driveability quality on a high dynamic engine test bed. The collaboration of three advanced methods will be presented: Objective real time driveability assessment, to predict the expected feelings of the buyers of the car Automatic computer assisted variation of ECU parameters on the basis of statistical methods like design of experiments (DoE). Thus data are measured in an automated process allowing an optimization based on models (e.g. neural networks).
X