Refine Your Search

Topic

Author

Search Results

Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

Development of a Component Level Test Methodology to Validate the Transmission Bush of a Manual Gear Box

2020-04-14
2020-01-1409
In the era of fierce competition, launching a defect free product on time would be the key to success. In a modern automobile, the transmission system is designed with utmost care in order to transfer the maximum power from engine to driveline smoothly and efficiently. Optimized design of all the transmission components is necessary in order to meet the power requirement with the least possible weight. This optimization may require gear designs with different internal diameters. The assembly of these gears may not be possible on a solid transmission shaft. To facilitate assembling while retaining optimum design of transmission parts, a separate bush is designed to overcome this limitation. Some bushes may require a flange to restrict any free play of the mounted gear in its axial direction. During complete system level testing of one newly developed manual transmission, bush failure was observed.
Technical Paper

Improving the Clutch Design Robustness by Virtual Validation to Predict Clutch Energy Dissipation and Temperature in Clutch Housing

2021-09-22
2021-26-0329
During the vehicle launch (i.e. moving the vehicle from “0” speed), the clutch would be slowly engaged by the Driver or Transmission Control Unit (in Automatic Transmission/Automatic Manual Transmission vehicle) for smooth torque transfer between engine and transmission. The clutch is designed to transfer max engine torque with min heat generation. During the clutch engagement, the difference in flywheel and gearbox input shaft speed is called the clutch slipping phase which then leads to a huge amount of energy being dissipated in terms heat due to friction. As a result, clutch surface temperature increases consistently, when the surface temperature crosses the threshold limit, the clutch wears out quickly or burns spontaneously. Hence it is crucial to predict the energy dissipation and temperature variation in various components of clutch assembly through virtual simulation.
Technical Paper

Design and Development of an Ultra-Low Friction and High Power-Density Diesel for the Indian Market

2020-04-14
2020-01-0834
This paper explains the methodology to design a high power-density diesel engine capable of 180 bar peak firing pressure yet achieving the lowest level of mechanical friction. The base engine architecture consists of an 8 mm crank-offset which is an optimized value to have the lowest piston side forces. The honing specification is changed from a standard plateau honing to an improved torque plate slide honing with optimized surface finish values. The cumulative tangential force of the piston rings is reduced to an extreme value of 28.5 N. A rectangular special coated top ring and a low-friction architecture oil ring are used to reduce the friction without increasing the blow-by and oil consumption. A special low-friction coating is applied on the piston skirt in addition to the optimized skirt profile to have reduced contact pressure. The piston pin is coated with diamond-like carbon (DLC) coating to have the lowest friction.
Technical Paper

A Holistic Approach to Develop a Modern High-Power Density Diesel Engine to Meet Best-in-Class NVH Levels

2020-04-14
2020-01-0406
The ever-increasing customer expectations put a lot of pressure on car manufacturers to constantly reduce the noise, vibration, and harshness (NVH) levels. This paper presents the holistic approach used to achieve best-in-class NVH levels in a modern high-power density 1.5 lit 4-cylinder diesel engine. In order to define the NVH targets for the engine, global benchmark engines were analysed with similar cubic capacity, power density, number of cylinders and charging system. Moreover, a benchmark diesel engine (considered as best-in-class in NVH) was measured in a semi-anechoic chamber to define the engine-level NVH targets of the new engine. The architecture selection and design of all the critical components were done giving due consideration to NVH behaviour while keeping a check on the weight and cost.
Technical Paper

A Unique Approach to Optimize the Gear-Shift Map of a Compact SUV to Improve FE and Performance

2020-04-14
2020-01-0969
Automated manual transmission (AMT) is often preferred by car manufacturers as entry-level automation technology. The AMT technology can provide the comfort of an automatic gearbox at a reasonable cost impact over manual transmission (MT). This paper explains the unique approach to define the gear-shift map of a compact sports utility vehicle (SUV) considering the unique requirements of the Indian market. The real-world measurements revealed that an aggressive shift pattern with delayed upshifts and quick downshifts can deliver good low-end drivability and performance while compromising on fuel economy (FE). Moreover, the chassis dyno measurements in the modified Indian drive cycle (MIDC) indicated lower FE values. On the other hand, a shift pattern with early upshifts and delayed downshifts could help in achieving a better FE while compromising on drivability and performance. Hence, a unique approach is used to derive the most optimal gear-shift map for each operating gear.
Technical Paper

Spot Weld Fatigue Correlation Improvement in Automotive Structures Using Stress Based Approach with Contact Modelling

2020-04-14
2020-01-0182
In automotive Body-In-White (BIW) structures, stiffness and the fatigue behavior is greatly influenced by the properties of its joints. Spot welding is one of the most widely used process for joining of sheet metals in BIW. Spot weld fatigue life under Accelerated Durability Test (ADT) is crucial for durability performance of BIW structures. Experience of BIW validations highlighted more number of spot weld failures in CAE when compared to actual tests. Hence, lot of iterations in the form of design modifications are required to be carried out to make these spot welds meet the targets which increases design & development time as well as cost. Current practice uses force-based approach for predicting spot weld fatigue life in CAE. To improve the spot weld fatigue life correlation, extensive study has been carried out on the approaches used for calculating spot weld fatigue life, namely force & stress-based approaches.
Technical Paper

Mold in Color Pianno Black PC Material for Automotive Exterior Application

2021-09-22
2021-26-0242
Aesthetics contribute significantly to the customer’s buying decision of an automobile. This is traditionally achieved through painting. Sustainability and cost challenges have led automakers to look at substituting painting through molded-in color polymers in decorative bezels like pillar appliques. These appliques and bezels have a unique mix of material requirements that include color tone, gloss, stiffness, scratch resistance and weathering. Polycarbonates are an interesting class of polymers that has the potential to meet these challenging requirements. This paper reports the work done in evaluating a polycarbonate compound in piano black shade to meet the functional and aesthetic requirements. The results prove that the material can substitute painting thereby resulting in significant cost savings. This is a ready to mold material used in injection molding process. This modified polycarbonate material has been explored for thin wall appliques and bezels with thickness of 2.7 mm.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Technical Paper

Study of Intake and Exhaust System Acoustic Performance Refinement with the Help of Vibro-Acoustic Analysis Tool

2010-06-09
2010-01-1427
Increase in customer's awareness for better vehicle NVH has prompted automobile industry to address NVH issues more seriously. Among other critical vehicle systems for NVH, Air Intake and Exhaust Systems play an important role in terms of passenger compartment noise, sound quality and vehicle pass-by noise. Hence proper design & development of these systems is imperative to reduce their contribution in overall vehicle NVH. This needs to be achieved within constraints of meeting other functional requirements such as emissions and engine performance. The design parameters one needs to look at while developing the intake and exhaust system are mainly the acoustic transmission loss, structural noise radiations from the surfaces and structural isolation between body and these systems. This paper demonstrates the use of FEM approach for Vibro-Acoustic Analysis as a practical means for design of intake and exhaust system in terms of high transmission loss.
Technical Paper

Comparative Analysis of Strain based Fatigue Life Obtained from Uni-Axial and Multi-Axial Loading of an Automotive Twist Beam

2017-01-10
2017-26-0312
Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
Technical Paper

Estimation of Clutch Life for Manual Transmission Vehicle Through Thermal Modeling of Clutch Housing and Clutch Facing

2017-10-08
2017-01-2439
Poor clutch life is a major issue for some light commercial vehicle models. Clutch overheating is the primary cause for clutch failure. Some of the reasons include inappropriate gear selection by the driver, poor low-end dynamic torque availability from an engine, heavy stop and go traffic, vehicle overloading resulting in excessive clutch slippage especially in gradients, riding of the clutch pedal by the customer etc. These situations lead to a high thermal energy dissipation at the clutch, increasing clutch wear and in extreme conditions leading to not only poor shift quality but also eventual clutch failure. Unfortunately, it is not practical to monitor clutch temperature in a production vehicle due to high costs or technical challenges involved. This paper describes 1-D thermal modeling of single plate dry clutch typically used in passenger car/truck and bus applications. The objective of simulation is to estimate the temperature rise on the clutch facing and clutch housing.
Technical Paper

Acoustic Analysis of a Tractor Muffler

2017-06-05
2017-01-1791
Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
Technical Paper

Polypropylene Copolymer Material for Automotive Thin Wall Front Bumper with Integrated Grill Application

2018-04-03
2018-01-0153
This paper describes modified polypropylene copolymer (PPCP) material for thin wall front bumper development (2.5 mm) with integrated grill in automotive application. This compounded PPCP material has optimized flow behavior, tensile strength, modulus, impact strength, and thermal properties to meet the functional requirements. This is a ready to mold material used in injection molding process. Front bumper and grill are functional components with slow speed impact requirement to absorb impact in real world. These parts have precise fitment requirement under sun load condition. Front bumper is also having other critical criteria with respect to vehicle variants such as aesthetic mold-in-color finish as well as painted finish. Grill has air entry performance criteria to ensure cooling efficiency in intercooler compartment.
Technical Paper

Duty Cycle Fatigue Simulation for Differential Casing

2012-04-16
2012-01-0813
In the current scenario of growing demand for lightweight designs for improving fuel economy and reduced cost, the focus is on optimum design solutions. This calls for improved and accurate prediction capabilities in terms of life or cycles the design can sustain in real world usage profile. Conventionally, the differential casings are simulated and designed for worst loads experienced and the approach used is infinite life design for these loads. But, this would lead to overdesign and increase weight. To counter this problem the methodology for fatigue analysis for the derived duty cycle of differential casing is developed. The critical regions can be identified based on life and the solutions can be worked out without major design changes. This paper briefs the nonlinear static load cases required for deriving the block cycle loading and incorporating these as a duty cycle in fatigue solver.
Technical Paper

Design of a Single Rail Internal Gear Shift System for a 5 Speed Manual Transmission

2013-04-08
2013-01-1771
This paper presents the detailed design of a Single Rail Internal Gear Shift System for a 5-speed manual transmission of a load carrier vehicle. Gear shifting in manual transmissions is achieved by actuating a synchronizer sleeve and engaging it with the required gear. Actuation of synchronizer sleeves is effected by gear shift forks which are supported in the transmission by a rail/shaft. Conventional 5-speed transmissions use Multi Rail Gear shift systems, wherein each of the forks viz. Fork 1-2, Fork3-4 & Fork 5th, for actuating the synchronizer sleeves, are supported by and fixed to individual rails. This paper presents the design of a Single Rail Gear shift system, wherein all the gear shift forks will be supported on a common rail/shaft, thus making the entire system compact and reducing the system weight. The Single Rail, in the proposed design, apart from supporting the three forks, also serves to actuate the Reverse Gear, which is of sliding mesh type in this case.
Technical Paper

Investigation on microstructure, mechanical and wear properties of alloyed gray cast iron for brake applications

2013-11-27
2013-01-2881
The strength and wear resistance of four alloyed cast irons with elements like Ni. Mo, Cu, Cr and Al have been compared and analyzed. The increased hardness is reducing the wear resistance of the alloy due to graphite flakes. Higher carbon produces more graphite flakes which act as weak points for reducing strength and wear resistance. The wear rate increases for harder cast iron sample with more graphite flakes. Wear rate drastically increases with increase in carbon equivalent. Strength was found to decrease for samples with higher graphite flakes. The wear debris consisted of graphite flakes in platelet like morphology along with iron particles from the matrix. The presence of carbon at the sliding interface also sometimes decreases wear rate.
Technical Paper

Measurement Technique for Quantifying Structure Borne and Air Borne Noise Levels in Utility Vehicle

2014-04-01
2014-01-0003
Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation.
Technical Paper

Experimental Determination of Acoustic Cavity Resonances of Vehicle Sub-Systems

2014-04-01
2014-01-0015
The present quiet and comfortable automobiles are the result of years of research carried out by NVH engineers across the world. Extensive studies helped engineers to attenuate the noise generated by major sources such as engine, transmission, driveline and road excitations to a considerable extent, which made other noise sources such as intake, exhaust and tire perceivable inside. Many active and passive methods are available to reduce the effect of said noise sources, but enough care needs to be taken at the design level itself to eliminate the effect of cavity resonances. Experimental investigation of cavity resonances of real systems is necessary besides the FEA model based calculations. Acoustic cavity resonance of vehicle sub systems show their presence in the interior noise through structure borne and air borne excitations. Cavity resonances for some systems e.g. intake can only be suppressed through resonators.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
X