Refine Your Search

Topic

Search Results

Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Technical Paper

Objective Drivability Evaluation on Compact SUV and Comparison with Subjective Drivability

2017-01-10
2017-26-0153
Over the ages of automotive history, expectations of the customers increases vastly starting from driving comfort, better fuel economy and a safe vehicle. Requirement of good vehicle drivability from customers are increasing without any compromise of fuel economy and vehicle features. To enhance the product, it is a must for every OEM’s to have better drivability to fulfill the needs of the customer. This paper explains Objective Drivability Evaluation done on compact SUV vehicle and comparison with subjective drivability. Vehicle manufacturer usually evaluate drivability based on the subjective assessments of experienced test drivers with a sequence of certain maneuvers. In this study, we have used the objective drivability assessment tool AVL drive to obtain the vehicle drivability rating. The vehicle inputs from the accelerometer sensor which captures the longitudinal acceleration and CAN bus signals such as engine speed, vehicle speed, accelerator pedal, are fed into the software.
Technical Paper

Comparative Analysis of Strain based Fatigue Life Obtained from Uni-Axial and Multi-Axial Loading of an Automotive Twist Beam

2017-01-10
2017-26-0312
Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
Technical Paper

A Development of Booming Index of Diesel SUV by using Artificial Neural Network

2012-06-13
2012-01-1542
In today's competitive scenario, understanding mental modal map of individual customer perception plays a major role to create the brand image of vehicle. Among them “comfortable sound” is one of the important criteria for customer satisfaction, especially in case of diesel vehicle, where in-cab sound quality plays a crucial factor. Often customer perception concerning comfort in automotive industry relies on subjective comfort evaluation method. Converting the customer perception into objective measurements and to correlate them is often tough task for NVH engineers. It is because of human sensation behavior differs from persons to person, mental map, geographical location and domain knowledge. In addition acoustic & comfort relevant aspects are often subjectively evaluated based on jury trials conducted on the prototype vehicle and class competitive benchmark vehicles to get the feel & confidence of product for different gateways.
Technical Paper

Investigation on microstructure, mechanical and wear properties of alloyed gray cast iron for brake applications

2013-11-27
2013-01-2881
The strength and wear resistance of four alloyed cast irons with elements like Ni. Mo, Cu, Cr and Al have been compared and analyzed. The increased hardness is reducing the wear resistance of the alloy due to graphite flakes. Higher carbon produces more graphite flakes which act as weak points for reducing strength and wear resistance. The wear rate increases for harder cast iron sample with more graphite flakes. Wear rate drastically increases with increase in carbon equivalent. Strength was found to decrease for samples with higher graphite flakes. The wear debris consisted of graphite flakes in platelet like morphology along with iron particles from the matrix. The presence of carbon at the sliding interface also sometimes decreases wear rate.
Technical Paper

Emission Optimization Approach to Meet the Current Indian Emission Norm Without EGR Cooling for a Vehicle Equipped with Common Rail Diesel Engine

2014-03-24
2014-01-2022
In India, diesel engine powered vehicles are finding rising demand due to the subsidy offered on diesel. Currently, BS-IV emission norm (equivalent to E-IV in Europe) is in existence. To meet this emission norm, OEM look for improved engine design, use of common rail injection system, advanced after treatment. In the current article, a methodology is demonstrated by which the required emissions on multipurpose vehicle (MPV) powered with 2.2L common rail injection system was met with no need of EGR cooling. This was achieved by identifying the operating points from the BS-IV emission cycle where EGR cooling is beneficial. The next step involves assessing the loss of function due to its removal. The final step involves strategies which can bring the original optimized value of NOx-PM. Removal of EGR cooling avoids the cooling of intake charge and reduces the HC and CO emission. Also, it gets rid of complication in the under bonnet packaging and leads to maintenance free operation.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Prediction of Buckling and Maximum Displacement of Hood Oilcanning Using Machine Learning

2023-04-11
2023-01-0155
Modern day automotive market demands shorter time to market. Traditional product development involves design, virtual simulation, testing and launch. Considerable amount of time being spent on virtual validation phase of product development cycle can be saved by implementing machine learning based predictive models for key performance predictions instead of traditional CAE. Durability oil canning loadcase for vehicle hood which impacts outer styling and involves time consuming CAE workflow takes around 11 days to complete analysis at all locations. Historical oil canning CAE results can be used to build ML model and predict key oil canning performances. This enables faster decision making and first-time right design. In this paper, prediction of buckling behaviour and maximum displacement of vehicle hood using ML based predictive model are presented. Key results from past CAE analysis are used for training and validating the predictive model.
Technical Paper

Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

2023-04-11
2023-01-0598
Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model.
Technical Paper

Instrumentation Technique Used for Design Optimization of Front Axle Support Bracket in Agricultural Tractor

2019-01-09
2019-26-0083
Agriculture tractor industry is highly competitive in the current market scenario with global majors competing in various markets. A tractor having an optimum design is of prime importance to keep the cost low while providing higher value to the customers. Technology advances in instrumentation methodology and data acquisition helps not only in providing the right inputs for the design of a component/system but also very much useful for design/system optimization. Front Axle Support of an agricultural tractor is one of the structural member which is connected to the Chassis which is called skid of the tractor to which the Front Axle is mounted through Pillow block (Plummer block) arrangement to facilitate axle oscillation about the tractor longitudinal center line. Front ballast weights are mounted on a bracket which is intern mounted to the front axle support to maintain the required front reaction in various agricultural operations.
Technical Paper

A Secondary De-Aeration Circuit for an Engine Cooling System with Atmospheric Recovery Bottle to Improve De-Aeration

2014-09-30
2014-01-2342
In any engine cooling system, de-aeration capability of the system plays a very critical role to avoid over heating of an engine. In general, with recovery bottle engine cooling system there is one vent hose from radiator pressure cap to the recovery bottle and coolant in the bottle is exposed to atmospheric pressure. From this vent hose air bubbles will move to recovery bottle from the engine and radiator when pressure in the system exceeds pressure cap setting. With this arrangement, de-aeration from the engine will happen when thermostat opens only and till that time air bubbles will be in the engine only and in this time there will be chance of overheating at some critical conditions because of air pockets in to the engine water jacket and the entrained air in the cooling circuit. Also, secondly 100 % initial filling cannot be achieved.
Technical Paper

Design of Light Weight Spoiler for Efficient Aerodynamic Performance of a Vehicle

2019-10-11
2019-28-0003
The spoiler is functional as well as aesthetic part fitted on the vehicles to improve the vehicle aerodynamic performance and better aesthetic appeal. The improvement of aerodynamics performance of the vehicle at higher speeds is achieved by reducing the overall vehicle coefficient of drag. This helps in better handling and improved fuel efficiency of the vehicle thus contributing to development of greener vehicle. In this project, our main focus is to reduce overall vehicle coefficient of drag, Design a light weight spoiler and improve the vehicle aesthetic appearance.
Technical Paper

Aerodynamic Drag Reduction of an Intercity Bus through Surface Modifications - A Numerical Simulation

2019-10-11
2019-28-0045
The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses, the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions.
Technical Paper

Mold in Color Diamond White ASA Material for Automotive Exterior Application

2019-11-21
2019-28-2562
In this paper, mold in color diamond white ASA material has been explored for front bumper grill, fender arch extension, claddings and hinge cover applications. Other than aesthetic requirements, these parts have precise fitment requirement under sun load condition in real world usage profile. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analyzed by using mold flow analysis. Complete product performances were validated for predefined key test metrics such as structural durability, thermal aging, cold impact, scratch resistance, and weathering criteria. This part met required specification. This mold in color ASA material-based parts has various benefits such as environmentally friendly manufacturing by eliminating environmental issues of coating, easily recycled, and faster part production because intended color achieved in one step during molding.
Technical Paper

Effect of Aluminum on Mechanical and Tribological Properties of Automotive Grade Gray Cast Iron

2015-01-14
2015-26-0066
Mechanical and wear properties of Al alloyed gray cast iron (0.5% and 1.0%) were compared with that of Mo (1.0%) and Cu (0.77%) alloyed gray cast iron in this investigation. All the alloys showed pearlitic microstructure. The graphite morphology varied due to varying chemistry. The fracture surface showed “cabbage” like dimpled morphology indicating the predominant ductile fracture. It was found that the Mo containing cast iron show 25 to 30% higher strength and 6 to 7 times better wear resistance compared to Al containing cast irons. The worn surface showed oxide formation during sliding.
Technical Paper

Natural and Artificial Weathering of Automotive Leather, Leatherette and Textile

2019-10-11
2019-28-0091
This paper presents the natural and artificial weathering behavior of different soft skin materials such as leather, leatherette and textiles used for automotive seat cover applications. The objective of this study was to understand the physical and aesthetical changes occurring at these flexible materials under sun UV light and heat exposure. The natural weathering study under glass exposure was carried out as per ASTM G 24 at natural weathering site location and artificial weathering as per SAE J2412 at lab. The material was observed for surface changes such as color, texture, crack and physical changes like flexibility and hardness during the exposure. The sample exposed at natural weathering data for every 15 days were recorded, and artificial weathering for every 100 hours were recorded.
Technical Paper

Development of Methodology to Determine Toe Geometry of any Vehicle at Its Early Design Stage for Optimum Tyre Life

2019-10-11
2019-28-0105
Toe setting is one of the major wheel alignment parameters which directly effects handling of a vehicle. Correct toe setting ensures desired dynamic behavior of an automobile like straight line stability, cornering behavior, handling and tire durability. Incorrect setting of toe during design stage significantly deteriorates tire durability and leads to uneven tire wear. In the present scenario of automotive industry, toe setting is majorly an iterative or a trial and error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Therefore, determining optimum toe setting at an early stage of a product development will not only save significant development time but it will also benefit in reducing product validation time and cost.
Technical Paper

A 1:3 Small Scale Vehicle Model Investigation in Small Scale Wind Tunnel and Correlation with Full Vehicle Testing

2021-09-22
2021-26-0493
In present study a comparative investigation and correlation attempted on small scale vehicle model for aerody-namic drag performance at small scale wind tunnel test facility in India vs full vehicle tested at globally know and accepted full scale test facility in Pininfarina, Italy. Current investigation aims to assess the small-scale wind tunnel suitable for testing 1:3 small scale car models A scale model of 1:3 scale size was tested in small scale wind tunnel (at IISC,Bengaluru, India) having test section area of 11.68 Sq. m. To understand the overall vehicle aerodynamic drag performance small scale model was test-ed for different configurations such as baseline, spoiler removal, underbody cover and different yaw condition. To understand the correlation between small scale vs full vehicle’s aerodynamic performance one actual vehicle was also tested at full scale wind tunnel Pinifarina Italy.
Technical Paper

Effect of Temperature on Synchronizer Ring Performance

2023-11-10
2023-28-0054
The brass synchronizers are not resistant to abusive conditions of gearbox operations, but they are very durable and cheap when used on their favorable material property working limit. The main failure which can occur in the gearbox due to the synchronizer is crash noise. During gear shifting the gear crash will create high discomfort for the driver and must apply high force to change the gears. The main factors which contribute to the crash phenomenon are the insufficient coefficient of friction, high drag in the system, and high wear rate of the synchronizer rings before the intended design life of the synchronizer. The brass synchronizers were tested on the SSP-180, ZF synchronizer test rig to know the effect of the synchronizer performance parameters like the coefficient of friction, sleeve force, slipping time as well as durability parameters like wear rate when the operating temperature of the oil is changed.
Technical Paper

High Durable PU Metallic Monocoat System for Tractor Sheet Metal Application

2019-11-21
2019-28-2541
In sheet metal painting for various applications like tractor and automobiles, most attractive coating is metallic paints. It is widely applied using 3 coat 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production through put time and lower productivity in manufacturing process. During various brainstorming and sustainability initiatives, paint application process was identified to reduce burden on environment and save energy. Various other industry benchmarking and field performance requirement studies helped to identify critical quality parameters. There was collaboration with supplier to develop monocoat system without compromising any performance and aesthetic properties. This resulted in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
X