Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Design of a Single Rail Internal Gear Shift System for a 5 Speed Manual Transmission

2013-04-08
2013-01-1771
This paper presents the detailed design of a Single Rail Internal Gear Shift System for a 5-speed manual transmission of a load carrier vehicle. Gear shifting in manual transmissions is achieved by actuating a synchronizer sleeve and engaging it with the required gear. Actuation of synchronizer sleeves is effected by gear shift forks which are supported in the transmission by a rail/shaft. Conventional 5-speed transmissions use Multi Rail Gear shift systems, wherein each of the forks viz. Fork 1-2, Fork3-4 & Fork 5th, for actuating the synchronizer sleeves, are supported by and fixed to individual rails. This paper presents the design of a Single Rail Gear shift system, wherein all the gear shift forks will be supported on a common rail/shaft, thus making the entire system compact and reducing the system weight. The Single Rail, in the proposed design, apart from supporting the three forks, also serves to actuate the Reverse Gear, which is of sliding mesh type in this case.
Technical Paper

Experimental Investigation of Efficiency Enhancement of Manual Transmission Gearbox Synchronizer Rings for the Enrichment of Gearshift Quality

2023-11-10
2023-28-0114
In developing countries, manual transmissions are leading the market due to their efficiency and low cost. In a manual transmission, the synchronizers play a vital role in defining the gear shift quality. Manual transmission vehicles are getting refined for a pleasant driving experience. The gear shift quality is one of the unique selling points for the vehicle, so the automakers are focusing on the reduction of the gear shift forces. In a manual transmission, the synchronizers are used to match the speed difference between the upstream and downstream inertia for the gear-shifting process. The synchronizers have conical friction surfaces to generate friction and cone torque. The increase in cone torque reduces the gear shift impulse. The cone torque can be increased with mismatch tolerance in the frictional surfaces. In this technique, two cone angles are used for the frictional surfaces.
X