Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis and Elimination of Howling Noise in Compact Utility Vehicle

2017-07-10
2017-28-1922
NVH is becoming one of the major factor for customer selection of vehicle along with parameters like fuel economy and drivability. One of the major NVH challenges is to have a vehicle with aggressive drivability and at the same time with acceptable noise and vibration levels. This paper focuses on the compact utility vehicle where the howling noise is occurring at higher rpm of the engine. The vehicle is powered by three cylinder turbocharged diesel engine. The noise levels were higher above 2500 rpm due to the presence of structural resonance. Operational deflection shapes (ODS) and Transfer path analysis (TPA) analysis was done on entire vehicle and powertrain to find out the major reason for howling noise at higher engine rpm. It is observed that the major contribution for noise at higher rpm is due to modal coupling between powertrain, half shaft and vehicle sub frame.
Technical Paper

Measurement Technique for Quantifying Structure Borne and Air Borne Noise Levels in Utility Vehicle

2014-04-01
2014-01-0003
Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation.
Technical Paper

Experimental Investigation of Effect of Driveline Torsional Fluctuations on Overall NVH Performance of the Vehicle

2015-06-15
2015-01-2192
Meeting various customer(s) requirements with the given automotive product portfolio within the stipulated time period is a challenge. Design of product configuration matrix is an intelligent task and it requires information about vehicle performance for different configurations which helps in deciding the level of new development. Most often the situation arises, particularly in the field of NVH, to strike the right balance between engine power and structural parameters of the body. The sensitivity of engine power on the overall NVH behavior is the key information necessary to take major business decisions. In this paper, the effect of change in torsional fluctuation of the engine on the NVH behavior of the rear wheel drive vehicle is experimentally studied. The torsional fluctuation of the driveline is given as an input with the help of an electric motor to the existing test vehicle at its differential end and the current NVH levels are measured.
X