Refine Your Search

Topic

Author

Search Results

Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Automated Test Setup for Edge Compute Connectivity Devices by Recreating Live Connected Ecosystem on the Bench

2021-09-22
2021-26-0498
Connected vehicle services have come a long way from the early days of telematics, both in terms of breadth of the class of vehicles, and in terms of richness or complexity of the data being handled for Enhancing Customer Experience. The Connectivity Control unit (CCU) is a gateway device for the vehicle to the outside world. While it enables transmission of vehicle data along with the location information. CCU is currently validated in the vehicle to check functionality. It has cost, time drawbacks and prevents effective testing of many scenarios. Bench level validation will not be able to complete functionality validation. There is subset of validation tools or semi-automated solutions are available in the market, but they are not fully functional, and critically cannot perform end to end validation. Automated Test setup for CCU in lab simulating the entire field data of the vehicle with modifiable characteristics.
Technical Paper

EGR Flow Control Strategy for a Smaller Capacity Diesel Engine Using a Phase Shifting Chamber

2020-04-14
2020-01-1358
Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions in diesel engines. EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. The stringent emission norms have forced diesel engines to further improve thermal efficiency and reduce nitrogen oxides (NOx). Throttle control is adopted in diesel intake system to control the EGR & fresh charge flow and to meet the emissions norms. In three or lesser cylinder. diesel engines, predominantly single and two-cylinder diesel engines, there is a higher possibility of the exhaust gas reaching the intake throttle and Particulate matter getting deposited on the throttle body. This can significantly affect the idling stability and intake restriction in prolonged usage. In idling condition, the clogged throttle body stagnates the fresh charge from entering the cylinder. The work aims at the study of flow pattern for EGR reaching the throttle body.
Technical Paper

Development of a Component Level Test Methodology to Validate the Transmission Bush of a Manual Gear Box

2020-04-14
2020-01-1409
In the era of fierce competition, launching a defect free product on time would be the key to success. In a modern automobile, the transmission system is designed with utmost care in order to transfer the maximum power from engine to driveline smoothly and efficiently. Optimized design of all the transmission components is necessary in order to meet the power requirement with the least possible weight. This optimization may require gear designs with different internal diameters. The assembly of these gears may not be possible on a solid transmission shaft. To facilitate assembling while retaining optimum design of transmission parts, a separate bush is designed to overcome this limitation. Some bushes may require a flange to restrict any free play of the mounted gear in its axial direction. During complete system level testing of one newly developed manual transmission, bush failure was observed.
Technical Paper

Design Improvement and Failure Simulation of Thermostat Vent Using Fatigue Test Method

2021-09-22
2021-26-0456
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. Even if there is a slight reduction in product cost and time has a high significant impact on business. Engineers are under tremendous pressure to develop competitive and give better product concern resolution at the earliest. To arrest the failure of this thermostat vent, an innovative approach was used to relocate de-aeration restrictor on the hose to the thermostat root. Thus, resolving the product concern by increasing the strength of the vent at root and providing good business impact on cost savings. Physical testing has provided an effective way to smoothen product development for concern resolution. This Paper highlights approach on an attempt to field failure simulation with existing and modified design with lab test results.
Technical Paper

Analysis of In-Cylinder Flow and Cycle-to-Cycle Flow Variations in a Small Spark-Ignition Engine at Different Throttle Openings

2020-04-14
2020-01-0793
Flow variations from one cycle to the next significantly influence the mixture formation and combustion processes in engines. Therefore, it is important to understand the fluid motion and its cycle-to-cycle variations (CCVs) inside the engine cylinder. Researchers have generally investigated the cycle-to-cycle flow variations in moderate- to large-sized engines. In the present work, we have performed the flow measurement and analysis in a small spark-ignition engine. Experiments are conducted in an optically accessible, single-cylinder, port-fuel-injection engine with displacement volume of 110 cm3 at different throttle openings (i.e. 50% and WOT) using particle image velocimetry. Images are captured at different crank angle positions during both intake and compression strokes over a tumble measurement plane, bisecting the intake and exhaust valves and passing through the cylinder axis.
Technical Paper

A Holistic Approach to Develop a Modern High-Power Density Diesel Engine to Meet Best-in-Class NVH Levels

2020-04-14
2020-01-0406
The ever-increasing customer expectations put a lot of pressure on car manufacturers to constantly reduce the noise, vibration, and harshness (NVH) levels. This paper presents the holistic approach used to achieve best-in-class NVH levels in a modern high-power density 1.5 lit 4-cylinder diesel engine. In order to define the NVH targets for the engine, global benchmark engines were analysed with similar cubic capacity, power density, number of cylinders and charging system. Moreover, a benchmark diesel engine (considered as best-in-class in NVH) was measured in a semi-anechoic chamber to define the engine-level NVH targets of the new engine. The architecture selection and design of all the critical components were done giving due consideration to NVH behaviour while keeping a check on the weight and cost.
Technical Paper

Analysis of Combustion Noise in a Small Common-Rail Direct-Injection Diesel Engine at Different Engine Operating Conditions

2020-04-14
2020-01-0419
Stringent emission regulations on one hand and increasing demand for better fuel economy along with lower noise levels on the other hand require adoption of advanced common-rail direct-injection technologies in diesel engines. In the present work, a small 0.9-l, naturally aspirated, two-cylinder, common-rail direct-injection diesel engine is used for the analysis of combustion noise at different engine operating conditions. Experiments are conducted at different loads and engine speeds, incorporating both single and multiple (i.e. pilot and main) injections along with different injection timings. In the case of multiple injections, the influence of pilot injection quantity is also evaluated on the combustion noise while maintaining the same load. In-cylinder pressure was recorded with the resolution of 0.1 crank angle degree, and it was used for the quantitative analysis of noise assessed from the resulting cylinder pressure spectra, and sound pressure level.
Technical Paper

A Computational Study on the Effect of Injector Location on the Performance of a Small Spark-Ignition Engine Modified to Operate under the Direct-Injection Mode

2020-04-14
2020-01-0286
In a direct-injection (DI) engine, charge motion and mixture preparation are among the most important factors deciding the performance and emissions. This work was focused on studying the effect of injector positioning on fuel-air mixture preparation and fuel impingement on in-cylinder surfaces during the homogeneous mode of operation in a naturally aspirated, small bore, 0.2 l, light-duty, air-cooled, four-stroke, spark-ignition engine modified to operate under the DI mode. A commercially available, six-hole, solenoid-operated injector was used. Two injector locations were identified based on the availability of the space on the cylinder head. One location yielded the spray-guided (SG) configuration, with one of the spray plumes targeted towards the spark plug. In the second location, the spray plumes were targeted towards the piston top in a wall-guided (WG) configuration so as to minimize the impingement of fuel on the liner.
Technical Paper

Innovative Method of Child Injury Performance Optimization using Sled Tests

2021-09-22
2021-26-0008
Child injury performance evaluation is becoming critical part of almost all legal and consumer ratings-based vehicle safety evaluation protocols. Most of New CAR Assessment Programs (NCAP) now have separate ratings exclusively to evaluate child restraint system effectiveness and child dummy performance under various crash testing modes. OEM’s have need and challenge to maximize injury performance. Sled tests are conventionally used for tuning restraints like seat belts and airbags for driver and co-driver under various frontal type test conditions. However, second row seats are used for CRS/ Child injury performance evaluations. In the present study an attempt is made to simulate child injury performance of P3 dummy positioned on second row seat on defined child seat for 64 kmph frontal Offset deformable barrier type test conforming to Global NCAP. Sled pulses are carefully tuned to capture key injury patterns. Thence restraint parameters are tuned to improve child dummy injuries
Journal Article

Development of Hydrogen Fuelled Low NOx Engine with Exhaust Gas Recirculation and Exhaust after Treatment

2017-01-10
2017-26-0074
Air pollution caused by vehicular tail pipe emissions has become a matter of grave concern in major cities of the world. Hydrogen, a carbon free fuel is a clean burning fuel with only concern being oxides of nitrogen (NOx) formed. The present study focuses on the development of a hydrogen powered multi-cylinder engine with low NOx emissions. The NOx emissions were reduced using a combination of an in-cylinder control strategy viz. Exhaust Gas Recirculation (EGR) and an after treatment method using hydrogen as a NOx reductant. In the present study, the low speed torque of the hydrogen engine was improved by 38.46% from 65 Nm to 90 Nm @ 1200 rpm by operating at an equivalence of 0.64. The higher equivalence ratio operation compared to the conventional low equivalence ratio operation lead to an increase in the torque generated but increased NOx as well.
Technical Paper

Comparative Studies on the Idling Performance of a Three Cylinder Passenger Car Engine Fitted with a Carburettor and a Single Point Electronic Gasoline Fuel Injection System

1997-05-01
971615
Experimental investigations relating to the performance and emission characteristics under idling conditions of a three cylinder passenger car spark ignition engine operating on a conventional carburettor and a developed single point gasoline fuel injection system are described in this paper. The idling performance at different engine speeds was studied by carrying out comprehensive engine testing on a test bed in two phases. In the first phase, experiments were conducted on an engine fitted with a conventional carburettor whilst they were extended to the engine provided with a developed electronic single point fuel injection (SPI) system, whose fuel spray was directed against the direction of air flow. The injection timing of the SPI system was varied from 82 deg. before inlet valve opening (or 98 deg. before top dead center) to 42 deg. after inlet valve opening (or 26 deg. after top dead center).
Technical Paper

Non-Reacting and Reacting Flow Analysis in an Aero-Engine Gas Turbine Combustor Using CFD

2007-04-16
2007-01-0916
A gas turbine combustion system is an embodiment of all complexities that engineering equipment can have. The flow is three dimensional, swirling, turbulent, two phase and reacting. The design and development of combustors, until recent past, was an art than science. If one takes the route of development through experiments, it is quite time consuming and costly. Compared to the other two components viz., compressor and turbine, the combustion system is not yet completely amenable to mathematical analysis. A gas turbine combustor is both geometrically and fluid dynamically quite complex. The major challenge a combustion engineer faces is the space constraint. As the combustion chamber is sandwiched between compressor and turbine there is a limitation on the available space. The critical design aspect is in facing the aerodynamic challenges with minimum pressure drop. Accurate mathematical analysis of such a system is next to impossible.
Technical Paper

Extrapolation of Service Load Data

2009-05-13
2009-01-1619
Fatigue design has to account for the scatter of component geometry, material behavior and loading. Scatter of the first two variables is mainly due to manufacturing and material sourcing. Loading on the other hand depends decisively on operating conditions and customer usage. Loading is certainly most difficult to determine. Tests on proving ground or even long-term real time measurements are used to obtain actual load time histories. Because of the costs of measurements and safety measure, real-time measurements are used exceptionally to gain changes in the usage profile. In this paper, an attempt has been made to find the difference in the extrapolated data to the actual data. A comparison has been made between the actual road distance of 2000 km to the extrapolated data of 100 km, 500 km and 1000 km to 2000 km. The front Axle channel is taken for the study.
Technical Paper

Dynamic Correlation and Optimization of an SUV Rear Bumper Structure

2010-04-12
2010-01-0501
Structural durability of different components and systems for a Utility Vehicle is critical to design, due to severe customer usage in rural zones and off road driving conditions. Physical validation of new component designs is time consuming, costly and iterative. Also, this process does not ensure an optimized structure. Through virtual validation it is possible in the initial phase of design to validate the structure and optimize the design. The core of a virtual validation process is to obtain accurate correlation which can replace developmental laboratory testing. Hence, only a confirmatory test can be carried out. This enables design optimization based on simulations. This paper presents the systematic approach used for optimization of SUV rear bumper and bumper mounting structure. Dynamic correlation is obtained for bumper structure subjected to the vibration levels as mapped from the proving ground test. The objective of new bumper development is for value engineering.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Technical Paper

A Systematic Approach for Design of Engine Crankcase Through Stress Optimization

2010-04-12
2010-01-0500
The cylinder block for the power train has always been a classic example of concurrent engineering in which disciplines like NVH, Durability, thermal management and lubrication system layout contribute interactively for concept design. Since the concept design is based on engineering judgment and is an estimated design, the design iterations for optimization are inevitable. This paper aims at outlining a systematic approach for design of crankcase for fatigue which would eliminate design iterations for durability. This allows a larger scope for design improvement at the concept stage as the design specifications are not matured at this stage. A process of stress optimization is adopted which gives accurate dimensional input to design. The approach is illustrated with a case study where an existing crankcase was optimized for fatigue and significant weight reduction was achieved.
Technical Paper

A Systematic Approach for Weight Reduction of BIW Panels through Optimization

2010-04-12
2010-01-0389
This paper describes application of Design of Experiments (DOE) technique and optimization for mass reduction of a Sports utility vehicle (SUV) body in white (BIW). Thickness of the body panels is taken as design variable for the study. The BIW global torsion, bending and front end modes are key indicators of the stiffness and mass of the structure. By considering the global modes the structural strength of the vehicle also gets accounted, since the vehicle is subjected to bending and twisting moments during proving ground test. The DOE is setup in a virtual environment and the results for different configurations are obtained through simulations. The results obtained from the DOE exercise are used to check the sensitivity of the panels. The panels are selected for mass reduction based on the analysis of the results. This final configuration is further evaluated for determining the stiffness and strength of the BIW.
Technical Paper

Design Strategies for Meeting ECE R14 Safety Test for Light Commercial Vehicle

2010-10-05
2010-01-2017
The ECE R-14, AIS015 safety standard specifies the requirements of the safety belt anchorages namely, minimum numbers, their locations, static strength to reduce the possibility of their failure during accidental crashes for effective occupant restraint and the test procedures. This standard applies to the anchorages of safety belts for adult occupants of forward facing or rearward facing seats in vehicles of categories M and N. ECE R14 ensures the passenger safety during sudden acceleration/retardation and accidents. Early simulations revealed some structural short falls that demanded cabin improvements in order to fulfill regulation requirements for the seal belt anchorage test. This paper describes the innovative design modifications done to meet the seat belt anchorage test. Good correlation with the test is achieved in terms of deformations. These simulation methods helped in reducing the number of intermediate physical tests during the design process.
X