Refine Your Search

Topic

Author

Search Results

Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

Simulation Based Approach to Improve the Engine Oil Warmup Behavior Using Exhaust Gas During NEDC Cycle

2021-09-22
2021-26-0422
During the cold start conditions engine must overcome higher friction loss, at the cost of fuel penalty till the optimum temperatures are reached in coolant and lubrication circuits. The lower thermal capacity of the lubrication oil (with respect to the coolant) inverses the relation of viscosity with temperature, improves engine thermal efficiency benefit. Engine oil takes full NEDC test cycle duration to reach 90°C. This leads to higher friction loss throughout the test cycle, contributing a significant increase in fuel consumption. Increasing oil temperature reduces viscosity, thereby reducing the engine friction. This helps to identify the focus for thermal management in the direction of speeding up the temperature rise during a cold engine starting. This work aims at the study and experiment of an exhaust recovery mechanism to improve the NEDC fuel economy.
Technical Paper

Development of a Modern Diesel Engine with Ultra-Low Bore Distortion to Reduce Friction, Blowby, Oil Consumption and DPF Ash Loading

2020-09-25
2020-28-0344
The stringent emission regulations coupled with tighter CO2 targets demand extreme optimization of the diesel engines. In this context, it is important to minimize the cylinder bore distortions in cold and hot conditions. The cold bore distortion is primarily due to the assembly forces applied by the cylinder head bolts whereas the hot distortion is a resultant of local metal temperatures and structural rigidity. The present work describes the extreme optimization techniques used to reduce the bore distortion of a modern high power-density (60 kW / lit) diesel engine, Moreover, the benefits of reducing the bore distortion are quantified in terms of cylinder system friction, blowby rate, oil consumption (OC) and ash loading rate of the diesel particulate filter (DPF). An optimized torque plate honing is used to reduce the bore distortion in cold conditions.
Technical Paper

Experiences in Cold Start Optimization of a Multi-Purpose Vehicle Equipped with 2.2L Common Rail Diesel Engine

2011-04-12
2011-01-0124
High speed diesel engines are difficult to start in cold conditions (at subzero temperature) because the cylinder head and cylinder block absorbs heat of compression and thus preventing ignition due to the high surface to volume ratio. Also the coolant and the engine oil become viscous at subzero temperature and make the condition unfavorable for starting. Combustion optimization along with the help of a heating aid can make these engines to start quickly without any engine misbehavior. Cold startability is the ability of an engine to start within a specified time and continue to run without any malfunctioning. Combustion instability will lead to the misfiring of the engine unless it is calibrated properly. The European countries are subjected to a minimum temperature of -20°C to -25°C. So the intention of this work is to optimize the cold startability of Mahindra's Multi-Purpose Vehicle (MPV) up to -25°C which is to be sold in European countries.
Technical Paper

Methodology to Quantitatively Evaluate the Secondary Ride Characteristics of a Vehicle

2017-07-10
2017-28-1959
The Ride Comfort has always been an important attribute of a vehicle that gets trade-off with handling characteristics of a vehicle. However, to cater the growing customer requirements for better ride comfort in a vehicle without compromising on other attributes, evaluating and achieving optimal ride comfort has become a significant process in the vehicle development. In the current engineering capability and virtual engineering simulations, creating an accurate and real time model to predict ride comfort of a vehicle is a challenging task. The qualitative evaluation of ride attributes has always been the proven conventional method to finalize the requirements of a vehicle. However, quantitative evaluation of vehicle ride characteristics benefits in terms of target setting during vehicle development process and in robust validation of the final intended product against its specifications.
Technical Paper

Low Rolling Resistance Tires and Their Impact on Electric Vehicles

2017-07-10
2017-28-1941
This paper details the methodology used to show the importance of Low rolling resistance tires in Electric Vehicles. Fuel efficiency and range is paramount with most of the electric vehicle buyers. Although many people are now becoming aware of low rolling resistance tires but its development started way back in 1990’s. It is always challenging to achieve low rolling resistance in smaller tires of size 12 inch or 13 inch along meeting the other critical vehicle parameters such as ride and handling, NVH, durability and many more. The reduction in rolling resistance can also affect the traction properties of tires. In case of very low rolling resistance tires the traction will be very less but it can badly affect the other vehicle parameters. Selection of tires further depend upon the RWUP (Real World Usage Profile). It means the vehicle is targeted for which region and what is the condition of roads there.
Technical Paper

Vehicle Interior Space Optimization through Occupant Seating Layout Apportioning

2017-07-10
2017-28-1923
Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
Technical Paper

Hybrid Oil Sump for CI Engine

2011-09-11
2011-24-0135
Recently fuel economy and stringent emission norms are the ever growing concern in automotive global scenario. So, automotive engineers are constantly seeking new cost effective methodologies and techniques to achieve considerable weight reduction and improved performance. Nowadays Automotive OEMs are using Aluminum Oil sump (which is a structured part of an engine and supports considerable amount of transmission housing weight) for better emission, reducing the engine height, engine weight and NVH levels. Our present work reveals the concept of ‘Hybrid oil sump’ which made by sheet metal and aluminum in such a way that weight and cost reduced by 20% and 30 % respectively, without compromising NVH and strength properties. Exactly it deals the iteration part of design to arrive the optimum model, various structural modifications since it carries considerable amount of weight of transmission.
Technical Paper

Development & Customization of Test Cases for Start-stop Functionality to Achieve On-road Robustness

2013-11-27
2013-01-2875
The Micro-hybrid technology otherwise called as stop start system offers a significant improvement in fuel economy particularly in urban driving conditions, where more often the engine idles unnecessarily at traffic signals/jams. Micro-hybrid technology stops the engine at traffic signals/jams and starts the engine automatically on clearance of traffic signals/jams leading to reduced fuel consumption and emissions. This is achieved by monitoring several vehicle and engine parameters through appropriate sensing elements. In this study, the system architecture and functional definitions of start/stop system is defined. Equivalence class, boundary value and decision-table testing are used to generate test cases. On generation of test cases, their relevance on on-road robustness and scope for optimization towards time/efforts are analyzed. In the process, a matrix of different conditions and criteria are formulated. Under these conditions, the system behavior is evaluated.
Technical Paper

Light Weighting of Accessory Support Bracket from Cast Iron to Aluminium Through Topology Optimization

2022-08-30
2022-01-1110
In today’s scenario, internal combustion engines have conflicting requirements of high power density and best in class weight. High power density leads to higher loads on engine components and calls for a material addition to meet the durability targets. Lightweight design not only helps to improve fuel economy but also reduces the overall cost of the engine. Material change from cast iron to aluminium has a huge potential for weight reduction as aluminium has 62% lesser mass density. But this light-weighting impacts the stiffness of the parts as elastic modulus drops by around 50%. Hence, this calls for revisiting the design and usage of optimization tools for load-bearing members on the engine to arrive at optimized sections and ribbing profiles. This paper discusses the optimization approach for one of the engine components i.e., the FEAD (front end accessory drive) bracket.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Chain Load Optimization through Fuel Pump Lobe Phasing and CAE Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0163
The introduction of CAFE (Corporate Average Fuel Economy) norms has put a lot of importance on improving the fuel economy of passenger car vehicles. One of the areas to improve the fuel economy is by reducing engine friction. Camshaft drive torque reduction is one such area that helps in engine friction reduction. This paper explains the camshaft drive torque optimization work done on a passenger car Diesel engine with DOHC (double overhead camshaft). The exhaust camshaft of the engine drives the high-pressure Fuel Injection Pump (FIP) in addition to valve actuation. Camshaft drive torque is reduced by reducing the chain load. This is done through optimum phasing of the FIP lobe that drives the fuel injection pump and the cam lobe actuating the exhaust valves. Additional boundary condition for the phasing is ensuring that the FIP lobe is in the fall region of its profile while the piston is at TDC. This helps in avoiding rail pressure fluctuation.
Technical Paper

Integrated Exhaust Manifold Design & Optimization of it through HCF and LCF Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0168
This paper discusses design and optimization process for the integration of exhaust manifold with turbocharger for a 3 cylinder diesel engine, simulation activities (CAE and CFD), and validation of manifold while upgrading to meet current BS6 emissions. Exhaust after-treatment system needs to be upgraded from a simple DOC (Diesel Oxidation Catalyst) to a complex DOC+sDPF (Selective catalytic reduction coated on Diesel Particulate Filter) to meet the BS6 emission norms for this engine. To avoid thermal losses and achieve a faster light-off temperature in the catalyst, the exhaust after-treatment (EATS) system needs to be placed close to the engine - exactly at the outlet of the turbocharger. This has given to challenges in packaging the EATS. The turbocharger in case of BS4 is placed near the 2nd cylinder of the engine, but this position will not allow placing the BS6 EATS.
Technical Paper

Selection of Gear Ratio for Smooth Gear Shifting

2012-09-24
2012-01-2005
Manual transmissions are characterized by gear ratios that are selectable by locking selected gear pairs to the output shaft inside the transmission. Top gear is selected to get a maximum speed and is limited by the engine power, speed and the fuel economy. Lower gears are selected to get maximum speed at maximum gradient. Lower gears are also expected to give creeping speed to avoid usage of clutch and brake in city traffic. Selection of intermediate gears is such that it provides a smoother gear shift. Gear spacing is done in geometric progression. Spacing between the higher gears is usually closer than in the lower gears because drivers shift more often between the lower gears. This is opposed to the conventional idea of progressive spacing where higher gears had more space between them. An objective method is provided for selecting gear ratios for use in vehicle transmission having multiple selectable gears.
Technical Paper

Functional Safety - Progressing Towards Safer Mobility

2013-11-27
2013-01-2841
Increasing complexity in E/E architecture poses several challenges in developing comfortable, clean and safe cars. This mandates robust processes to mitigate potential hazards due to malfunction of electronic systems throughout the product life cycle. With the advent of ISO 26262 [1] which provides guidelines for developing safe cars, the process is getting standardized towards safer mobility. In this paper, the functional safety process is briefly covered and a case study of Hazard Analysis and Risk Assessment for specific E/E system is presented. An in-house tool developed for functional safety process and management is covered.
Technical Paper

Random Vibration Fatigue Evaluation of Plastic Components in Automotive Engines

2022-03-29
2022-01-0765
Light weighting in modern automotive powertrains call for use of plastics (PP, PA66GF35) for cam covers, intake manifolds and style covers, and noise encapsulation covers. Conventionally, in early stage of design these components are evaluated for static assembly loads & gasket compression loads at component level. However, engine dynamic excitations which are random in nature make it challenging to evaluate these components for required fatigue life. In this paper, robust methodology to evaluate the fatigue life of engine style cover assembly for random vibration excitations is presented. The investigation is carried out in a high power-density 4-cylinder in-line diesel engine. The engine style cover (with Polyurethane foam) is mounted on cam cover and the intake manifold using steel studs and rubber isolators to suppress the radiated noise.
X